Sampling theorem and discrete Fourier transform on the Riemann sphere

被引:9
|
作者
Calixto, M. [1 ]
Guerrero, J. [2 ]
Sanchez-Monreal, J. C. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[2] Univ Murcia, Dept Matemat Aplicada, E-30100 Murcia, Spain
关键词
holomorphic functions; coherent states; discrete Fourier transform; sampling; frames;
D O I
10.1007/s00041-008-9027-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of N samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to J, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.
引用
收藏
页码:538 / 567
页数:30
相关论文
共 50 条
  • [1] Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2008, 14 : 538 - 567
  • [2] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2011, 17 : 240 - 264
  • [3] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 240 - 264
  • [4] Discrete Fourier transform and Riemann identities for θ functions
    Malekar, R. A.
    Bhate, H.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1415 - 1419
  • [5] Sampling Theorem Based Fourier–Legendre Transform
    Kuwata S.
    Kawaguchi K.
    International Journal of Applied and Computational Mathematics, 2020, 6 (4)
  • [6] Unified fractional Fourier transform and sampling theorem
    Erseghe, T
    Kraniauskas, P
    Cariolaro, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3419 - 3423
  • [7] SUPERPOSITION THEOREM OF DISCRETE FOURIER TRANSFORM AND ITS APPLICATION TO FAST FOURIER TRANSFORM
    ACHILLES, D
    ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK, 1971, 25 (05): : 251 - &
  • [8] Sampling theorem associated with the discrete cosine transform
    Kovacevic, Jelena
    Puschel, Markus
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2808 - 2811
  • [9] Unlimited Sampling Theorem Based on Fractional Fourier Transform
    Zhao, Hui
    Li, Bing-Zhao
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [10] Sampling theorem associated with quasi-fourier transform
    Wang, Qiao
    Wu, Lenan
    IEEE Transactions on Signal Processing, 2000, 48 (03)