Microencapsulated Paraffin Phase-Change Material with Calcium Carbonate Shell for Thermal Energy Storage and Solar-Thermal Conversion

被引:87
|
作者
Jiang, Zhuoni [1 ,3 ]
Yang, Wenbin [1 ]
He, Fangfang [1 ]
Xie, Changqiong [1 ]
Fan, Jinghui [2 ]
Wu, Juying [2 ]
Zhang, Kai [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Sichuan, Peoples R China
[2] China Acad Engn Phys, Inst Syst Engn, Mianyang 621900, Sichuan, Peoples R China
[3] Univ Sci & Technol China, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
关键词
SELF-ASSEMBLY SYNTHESIS; CHANGE COMPOSITE; N-EICOSANE; CONDUCTIVITY; ENHANCEMENT; FABRICATION; ACID; MICROCAPSULES;
D O I
10.1021/acs.langmuir.8b03084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of microencapsulated phase-change materials (MEPCMs) based on paraffin core and calcium carbonate (CaCO3) shell were synthesized, and the effect of emulsifier type and pH value on morphology, structure, and properties of paraffin@CaCO3 MEPCMs were investigated. The results showed that CaCO3 shell was formed in vaterite and calcite crystalline phase when emulsifier was sodium dodecyl benzene sulfonate and styrene-maleic anhydride (SMA), respectively. When sodium dodecyl sulfate was used as an emulsifier, both vaterite and calcite CaCO3 were formed. The forming mechanism of emulsifier type on CaCO3 crystalline phase was studied. Furthermore, phase-change enthalpy and leakage rate of MEPCMs were related with the type of emulsifier and the pH value of the emulsion. With optimum condition of SMA as emulsifier and pH value of 7, paraffin@CaCO3 MEPCMs had an encapsulation ratio at 56.6% and leakage rate at 2.88%, illustrating its considerable heat storage capability and leakage-prevention property. The 50 heating-cooling cycles test indicated that the MEPCMs owned excellent thermal reliability. The thermal conductivity of MEPCMs was significantly improved due to the existence of CaCO3 shell. In addition to excellent thermal storage ability, the paraffin@CaCO3 MEPCMs also owned good mechanical property and light-to-heat energy conversion efficiency. The characteristics of MEPCMs indicated its potential application in solar energy resource.
引用
收藏
页码:14254 / 14264
页数:11
相关论文
共 50 条
  • [41] Dodecanoic acid as a promising phase-change material for thermal energy storage
    Desgrosseilliers, Louis
    Whitman, Catherine A.
    Groulx, Dominic
    White, Mary Anne
    APPLIED THERMAL ENGINEERING, 2013, 53 (01) : 37 - 41
  • [42] Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system
    Huang, M. J.
    Eames, P. C.
    McCormack, S.
    Griffiths, P.
    Hewitt, N. J.
    RENEWABLE ENERGY, 2011, 36 (11) : 2932 - 2939
  • [43] Experimental study on enhancement of thermal energy storage with phase-change material
    Yang, Jialin
    Yang, Lijun
    Xu, Chao
    Du, Xiaoze
    APPLIED ENERGY, 2016, 169 : 164 - 176
  • [44] MXene/d-Mannitol aerogel phase change material composites for medium-temperature energy storage and solar-thermal conversion
    Bai, Yu
    Wang, Shuangfeng
    JOURNAL OF ENERGY STORAGE, 2023, 67
  • [45] Preparation and Characterization of Poly (MMA-co-AA)/Paraffin Microencapsulated Phase Change Material for Thermal Energy Storage
    Zhang, M.
    Tong, X. -M.
    Zhang, H.
    Qiu, J. -H.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2012, 34 (5-8) : 396 - 403
  • [46] Microencapsulated capric-stearic acid with silica shell as a novel phase change material for thermal energy storage
    Song, Shaokun
    Dong, Lijie
    Qu, Zhengyao
    Ren, Jing
    Xiong, Chuanxi
    APPLIED THERMAL ENGINEERING, 2014, 70 (01) : 546 - 551
  • [47] Synthesis and characterization of microencapsulated phase change material with phenol-formaldehyde resin shell for thermal energy storage
    Liu, Chenzhen
    Cao, Huanxin
    Jin, Shaocai
    Cheng, Qingjiang
    Rao, Zhonghao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 243
  • [48] Experimental study on thermal storage and heat transfer performance of microencapsulated phase-change material slurry
    Bai, Zhirui
    Miao, Yubo
    Xu, Hongtao
    Gao, Qiang
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 17
  • [49] Thermal properties of paraffin based nano-phase change material as thermal energy storage
    Amin, Muhammad
    Afriyanti, Fitri
    Putra, Nandy
    2ND INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC) 2017, 2018, 105
  • [50] EXPERIMENTAL INVESTIGATION OF MICROENCAPSULATED PHASE-CHANGE MATERIAL (MPCM) SLURRY EFFECTIVE THERMAL STORAGE CAPACITIES
    Zhang, Shuo
    Niu, Jianlei
    PROCEEDINGS OF THE FIRST INTERNATIONAL POSTGRADUATE CONFERENCE ON INFRASTRUCTURE AND ENVIRONMENT, 2009, : 31 - 44