Microencapsulated Paraffin Phase-Change Material with Calcium Carbonate Shell for Thermal Energy Storage and Solar-Thermal Conversion

被引:87
|
作者
Jiang, Zhuoni [1 ,3 ]
Yang, Wenbin [1 ]
He, Fangfang [1 ]
Xie, Changqiong [1 ]
Fan, Jinghui [2 ]
Wu, Juying [2 ]
Zhang, Kai [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Sichuan, Peoples R China
[2] China Acad Engn Phys, Inst Syst Engn, Mianyang 621900, Sichuan, Peoples R China
[3] Univ Sci & Technol China, Dept Polymer Sci & Engn, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
关键词
SELF-ASSEMBLY SYNTHESIS; CHANGE COMPOSITE; N-EICOSANE; CONDUCTIVITY; ENHANCEMENT; FABRICATION; ACID; MICROCAPSULES;
D O I
10.1021/acs.langmuir.8b03084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of microencapsulated phase-change materials (MEPCMs) based on paraffin core and calcium carbonate (CaCO3) shell were synthesized, and the effect of emulsifier type and pH value on morphology, structure, and properties of paraffin@CaCO3 MEPCMs were investigated. The results showed that CaCO3 shell was formed in vaterite and calcite crystalline phase when emulsifier was sodium dodecyl benzene sulfonate and styrene-maleic anhydride (SMA), respectively. When sodium dodecyl sulfate was used as an emulsifier, both vaterite and calcite CaCO3 were formed. The forming mechanism of emulsifier type on CaCO3 crystalline phase was studied. Furthermore, phase-change enthalpy and leakage rate of MEPCMs were related with the type of emulsifier and the pH value of the emulsion. With optimum condition of SMA as emulsifier and pH value of 7, paraffin@CaCO3 MEPCMs had an encapsulation ratio at 56.6% and leakage rate at 2.88%, illustrating its considerable heat storage capability and leakage-prevention property. The 50 heating-cooling cycles test indicated that the MEPCMs owned excellent thermal reliability. The thermal conductivity of MEPCMs was significantly improved due to the existence of CaCO3 shell. In addition to excellent thermal storage ability, the paraffin@CaCO3 MEPCMs also owned good mechanical property and light-to-heat energy conversion efficiency. The characteristics of MEPCMs indicated its potential application in solar energy resource.
引用
收藏
页码:14254 / 14264
页数:11
相关论文
共 50 条
  • [1] Pyrazolium Phase-Change Materials for Solar-Thermal Energy Storage
    Matuszek, Karolina
    Vijayaraghavan, R.
    Forsyth, Craig M.
    Mahadevan, Surianarayanan
    Kar, Mega
    MacFarlane, Douglas R.
    CHEMSUSCHEM, 2020, 13 (01) : 159 - 164
  • [2] Preparation and characterization of paraffin microencapsulated phase change material with double shell for thermal energy storage
    Yu, Xiaokun
    Luan, Jingde
    Chen, Wei
    Tao, Jialu
    THERMOCHIMICA ACTA, 2020, 689
  • [3] Solar-thermal conversion and thermal energy storage of different phase change materials
    Eidgah, Emadoddin Erfani Farsi
    Ghafurian, Mohammad Mustafa
    Tavakoli, Ali
    Mortazavi, Ali
    Kianifar, Ali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (16) : 8051 - 8060
  • [4] Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 8051 - 8060
  • [5] Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage
    Sari, Ahmet
    Saleh, Tawfik A.
    Hekimoglu, Gokhan
    Tyagi, V. V.
    Sharma, R. K.
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 328
  • [6] CNTs composite aerogel incorporating phase-change microcapsules for solar-thermal conversion and energy storage
    Han, Zhisong
    Du, Danfeng
    Zhang, Fengmei
    CARBON, 2025, 237
  • [7] Correction: Solar-thermal conversion and thermal energy storage of different phase change materials
    Emadoddin Erfani Farsi Eidgah
    Mohammad Mustafa Ghafurian
    Ali Tavakoli
    Ali Mortazavi
    Ali Kianifar
    Journal of Thermal Analysis and Calorimetry, 2024, 149 (1) : 519 - 519
  • [8] Development of microencapsulated phase change material for solar thermal energy storage
    Su, Weiguang
    Darkwa, Jo
    Kokogiannakis, Georgios
    APPLIED THERMAL ENGINEERING, 2017, 112 : 1205 - 1212
  • [9] Solar thermal conversion and thermal energy storage of CuO/Paraffin phase change composites
    Chen, Meijie
    He, Yurong
    Ye, Qin
    Zhang, Zhenduo
    Hu, Yanwei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 130 : 1133 - 1140
  • [10] Thermal performance of modified melamine foam/graphene/paraffin wax composite phase change materials for solar-thermal energy conversion and storage
    Cui, Wei
    Li, Xiangxuan
    Li, Xinyi
    Si, Tianyu
    Lu, Lin
    Ma, Ting
    Wang, Qiuwang
    JOURNAL OF CLEANER PRODUCTION, 2022, 367