Thermally responsive polymer-nanoparticle composites for biomedical applications

被引:82
|
作者
Strong, Laura E. [1 ]
West, Jennifer L. [1 ]
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77251 USA
关键词
MAGNETIC HYDROGEL NANOCOMPOSITES; GOLD NANOPARTICLES; DRUG-DELIVERY; N-ISOPROPYLACRYLAMIDE; REVERSIBLE ADDITION; OXIDE NANOPARTICLES; SENSITIVE HYDROGELS; OPTICAL-PROPERTIES; TEMPERATURE; POLY(N-ISOPROPYLACRYLAMIDE);
D O I
10.1002/wnan.138
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermally responsive polymer-metal nanoparticle composites couple the ability of certain metal nanoparticles to convert external stimuli to heat with polymers that display sharp property changes in response to temperature changes, allowing for external control over polymer properties. These systems have been investigated for a variety of biomedical applications, including drug delivery, microfluidic valve control, and cancer therapy. This article focuses on three different size scales of this system: bulk systems (> 1 mm), nano-or microscale systems, and individual particle coatings. These composite systems will continue to be widely researched in the future for their vast potential in various biomedical applications. (C) 2011 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2011 3 307-317 DOI:10.1002/wnan.138
引用
收藏
页码:307 / 317
页数:11
相关论文
共 50 条
  • [1] Polymer-Nanoparticle Composites: From Synthesis to Modern Applications
    Hanemann, Thomas
    Szabo, Dorothee Vinga
    MATERIALS, 2010, 3 (06) : 3468 - 3517
  • [2] Properties of polymer-nanoparticle composites
    Schmidt, G
    Malwitz, MM
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2003, 8 (01) : 103 - 108
  • [3] Fabrication of Plasmon-Active Polymer-Nanoparticle Composites for Biosensing Applications
    Abhinay Mishra
    Abdul Rahim Ferhan
    Chee Meng Benjamin Ho
    JooHyun Lee
    Dong-Hwan Kim
    Young-Jin Kim
    Yong-Jin Yoon
    International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8 : 945 - 954
  • [4] Fabrication of Plasmon-Active Polymer-Nanoparticle Composites for Biosensing Applications
    Mishra, Abhinay
    Ferhan, Abdul Rahim
    Ho, Chee Meng Benjamin
    Lee, JooHyun
    Kim, Dong-Hwan
    Kim, Young-Jin
    Yoon, Yong-Jin
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2021, 8 (03) : 945 - 954
  • [5] Monte Carlo Simulation of Polymer-Nanoparticle Composites
    Terao, Takamichi
    CHEMISTRY LETTERS, 2012, 41 (11) : 1425 - 1427
  • [6] Failure mechanism of glassy polymer-nanoparticle composites
    Lee, Jong-Young
    Zhang, Qingling
    Wang, Jia-Yu
    Emrick, Todd
    Crosby, Alfred J.
    MACROMOLECULES, 2007, 40 (17) : 6406 - 6412
  • [7] A biocatalytic approach to polymer-protein and polymer-nanoparticle composites
    Xu, X
    Banerjee, S
    Baumgartner, T
    Premchandran, R
    Kommareddi, N
    McCormick, M
    John, V
    McPherson, CJ
    OConnor, CJ
    Akkara, J
    Kaplan, D
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 22 - PMSE
  • [8] Entropy dominated behaviors of confined polymer-nanoparticle composites
    曹学正
    Merlitz Holger
    Sommer Jens-Uwe
    吴晨旭
    Chinese Physics B, 2012, 21 (11) : 515 - 519
  • [9] Diminishing Interfacial Effects with Decreasing Nanoparticle Size in Polymer-Nanoparticle Composites
    Emamy, Hamed
    Kumar, Sanat K.
    Starr, Francis W.
    PHYSICAL REVIEW LETTERS, 2018, 121 (20)
  • [10] Phase stability and dynamics of entangled polymer-nanoparticle composites
    Mangal, Rahul
    Srivastava, Samanvaya
    Archer, Lynden A.
    NATURE COMMUNICATIONS, 2015, 6