NEWTON POLYGONS FOR CHARACTER SUMS AND POINCARE SERIES

被引:2
|
作者
Blache, Regis [1 ]
机构
[1] IUFM Guadeloupe, Equipe LAMIA, F-97139 Les Abymes, Guadeloupe, France
关键词
Character sums; L-functions; Newton polygons and polytopes; TWISTED EXPONENTIAL-SUMS; ZETA-FUNCTIONS; POLYHEDRA; COHOMOLOGY;
D O I
10.1142/S1793042111004368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we precise the asymptotic behavior of Newton polygons of L-functions associated to character sums, coming from certain n variable Laurent polynomials. In order to do this, we use the free sum on convex polytopes. This operation allows the determination of the limit of generic Newton polygons for the sum Delta = Delta(1) circle plus Delta(2) when we know the limit of generic Newton polygons for each factor. To our knowledge, these are the first results concerning the asymptotic behavior of Newton polygons for multivariable polynomials when the generic Newton polygon differs from the combinatorial (Hodge) polygon associated to the polyhedron.
引用
收藏
页码:1519 / 1542
页数:24
相关论文
共 50 条
  • [21] Newton polygons and families of polynomials
    Bodin, A
    MANUSCRIPTA MATHEMATICA, 2004, 113 (03) : 371 - 382
  • [22] Brasselet number and Newton polygons
    Thaís M. Dalbelo
    Luiz Hartmann
    manuscripta mathematica, 2020, 162 : 241 - 269
  • [23] Brasselet number and Newton polygons
    Dalbelo, Thais M.
    Hartmann, Luiz
    MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 241 - 269
  • [24] Newton polygons and families of polynomials
    Arnaud Bodin
    manuscripta mathematica, 2004, 113 : 371 - 382
  • [25] Newton polygons and curve gonalities
    Wouter Castryck
    Filip Cools
    Journal of Algebraic Combinatorics, 2012, 35 : 345 - 366
  • [26] Newton polygons of Hecke operators
    Chiriac, Liubomir
    Jorza, Andrei
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 271 - 290
  • [27] Newton polygons as lattice points
    Chai, CL
    AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) : 967 - 990
  • [28] Newton polygons and curve gonalities
    Castryck, Wouter
    Cools, Filip
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 35 (03) : 345 - 366
  • [29] Okutsu invariants and Newton polygons
    Guardia, Jordi
    Montes, Jesus
    Nart, Enric
    ACTA ARITHMETICA, 2010, 145 (01) : 83 - 108
  • [30] Purity of the stratification by Newton polygons
    De Jong, AJ
    Oort, F
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (01) : 209 - 241