Quasi-pseudo-hoops: An Extension to Pseudo-hoops

被引:0
|
作者
Chen, Wenjuan [1 ,2 ]
Chen, Zhaoying [2 ]
Wang, Hongkai [2 ]
机构
[1] Shandong Univ, Sch Math, 27 Shanda Nanlu, Jinan 250100, Shandong, Peoples R China
[2] Univ Jinan, Sch Math Sci, 336 West Rd Nan Xinzhuang, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Filters; Pseudo-hoops; Quasi-pseudo-MV algebras; Quasi-pseudo-BL algebras; Quasi-pseudo-hoops; FILTERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the notion of quasi-pseudo-hoops (qp-hoops, for short) as the generalization of pseudo-hoops. First we give some new notions in order to define qp-hoops. We investigate the basic properties of qp-hoops and also prove that any qp-hoop has the Riesz Decomposition Property. Second we discuss filters of qp-hoops and show that there exists a bijective correspondence between normal filters and filter congruences on any qp-hoop. Finally, we introduce and study some subclasses of qp-hoops. The subdirect product decomposition of a bounded qp-hoop is shown. We also present that bounded Wajsberg qp-hoops with additional conditions are equivalent to quasi-pseudo-MV algebras and bounded basic qp-hoops with additional conditions are equivalent to quasi-pseudo-BL algebras.
引用
收藏
页码:299 / 331
页数:33
相关论文
共 50 条
  • [21] QUASI UNIFORMITIES AND QUASI PSEUDO METRICS
    REILLY, IL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 535 - &
  • [22] Pseudo-holomorphic extension
    不详
    HOLOMORPHIC Q CLASSES, 2001, 1767 : 57 - 66
  • [23] PSEUDO QUASI METRIC SPACES
    KIM, YW
    PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (10): : 1009 - &
  • [24] (Quasi, pseudo)-homogeneity of Θ-Ξ functions
    Liu, Cui
    Qin, Feng
    Qiao, Junsheng
    Huang, Xiang
    Cai, Liqian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [25] A CLASS OF PSEUDO-CONFORMAL AND QUASI-PSEUDO-CONFORMAL MAPPINGS
    BERGMAN, S
    MATHEMATISCHE ANNALEN, 1958, 136 (02) : 134 - 138
  • [26] EXTENSION THEOREM FOR A PSEUDO-ARC
    MACKOWIAK, T
    FUNDAMENTA MATHEMATICAE, 1984, 123 (02) : 71 - 79
  • [27] AN EXTENSION OF THE PSEUDO-FERMION METHOD
    SHAW, M
    LIU, FS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1993, 20 (02) : 147 - 152
  • [28] On pseudo quasi-Einstein manifolds
    Shaikh, Absos Ali
    PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (02) : 119 - 146
  • [29] CHARACTERISTIC PSEUDO QUASI TOPOLOGICAL SPACES
    KIM, YW
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (02): : 103 - &
  • [30] On pseudo quasi-Einstein manifolds
    Absos Ali Shaikh
    Periodica Mathematica Hungarica, 2009, 59 : 119 - 146