Novel polyanion conduction in Sc2(WO4)3 type negative thermal expansion oxides

被引:17
|
作者
Zhou, Yongkai [1 ]
Neiman, Arkady [2 ]
Adams, Stefan [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore
[2] Ural State Univ, Dept Chem, Ekaterinburg 620083, Russia
来源
关键词
scandium tungstate; polyatomic ion conduction; negative thermal expansion; molecular dynamics simulation; MOLECULAR-DYNAMICS SIMULATIONS; SOLID ELECTROLYTES; ION CONDUCTION; SC-2(MOO4)(3); TRANSPORT;
D O I
10.1002/pssb.201083969
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The relationship between the polyatomic anion conduction and negative thermal expansion (NTE) in Sc-2(WO4)(3) type structure has been investigated by a combination of computational, electrochemical and X-ray diffraction approaches. The motion of the effective charge carriers in solid-state ionics can be visualised by molecular dynamics (MD) simulations if proper initial structure and force-field are known. By successfully reproducing the NTE for a large temperature range, we have designed and verified a valid force-field to predict the mobile species in Sc-2(WO4)(3). Using the same force-field a series of correlated WO42- migrations are observed in extended isothermal-isobaric MD simulations. Tubandt-type electrolysis experiments confirmed that the mobile species in Sc-2(WO4)(3) is anionic. Scandium tungstate is thus the prototype of novel class of ionic conductors, a WO42- anion conductors. The relationship of the ion transport in this unique ion conductors with polyatomic mobile charge carriers to the NTE is discussed. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:130 / 135
页数:6
相关论文
共 50 条
  • [31] Sc2(WO4)3的高温快速合成及特性研究
    王少辉
    王玉梅
    唐山师范学院学报, 2010, 32 (02) : 55 - 58
  • [32] Sc2(MoO4)3 and Sc2(WO4)3: Halide Flux Growth of Single Crystals and 45Sc Solid-state NMR
    Balamurugan, Sarkarainadar
    Rodewald, Ute Ch.
    Harmening, Thomas
    van Wuellen, Leo
    Mohr, Daniel
    Eckert, Hellmut
    Poettgen, Rainer
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 2010, 65 (01): : 13 - 17
  • [33] Ion conducting behavior in (Lu1-xMx)2(WO4)3 solid solutions (M = Sm, Ho, Er) with the Sc2(WO4)3 type structure
    Imanaka, N
    Köhler, J
    Tamura, S
    Adachi, GY
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2002, (01) : 105 - 109
  • [34] Sc2(WO4)3负热膨胀材料合成及其热性能
    朱君君
    程晓农
    杨娟
    功能材料, 2011, 42 (03) : 553 - 556
  • [35] Carbon dioxide gas sensor with trivalent Sc3+ ion conducting Sc2(WO4)3 solid electrolyte
    Imanaka, N
    Kamikawa, M
    Tamura, S
    Adachi, G
    CHEMICAL SENSORS IV, PROCEEDINGS OF THE SYMPOSIUM, 1999, 99 (23): : 255 - 261
  • [36] Frenkel Defect-modulated Anti-thermal Quenching Luminescence in Lanthanide-doped Sc2(WO4)3
    Wei, Yang
    Pan, Yue
    Zhou, Enlong
    Yuan, Ze
    Song, Hao
    Wang, Yilin
    Zhou, Jie
    Rui, Jiahui
    Xu, Mengjiao
    Ning, Lixin
    Liu, Zhanning
    Wang, Hongyu
    Xie, Xiaoji
    Tang, Xiaobin
    Su, Haiquan
    Xing, Xianran
    Huang, Ling
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (27)
  • [37] M2WO4-SC2(WO4)3 SYSTEMS
    KARPOV, VN
    SOROKINA, OV
    ZHURNAL NEORGANICHESKOI KHIMII, 1973, 18 (06): : 1663 - 1668
  • [38] Anomalous ionic conductivity of SC2(WO4)3 mediated by structural changes at high pressures and temperatures
    Secco, RA
    Liu, H
    Imanaka, N
    Adachi, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (44) : 11285 - 11289
  • [39] Anti-thermal quenching of Eu3+ luminescence in negative thermal expansion Zr(WO4)2
    Zhou, Liangjun
    Wang, Wenxi
    Xu, Dekang
    Wang, Zhenyu
    Yi, Zhibin
    Wang, Min
    Lu, Zhouguang
    CERAMICS INTERNATIONAL, 2021, 47 (24) : 34820 - 34827
  • [40] Upconversion Luminescence and Temperature Sensing Properties for Sc2(WO4)3: Er3+/Yb3+
    Jin, Ye
    Li, Kun
    Luo, Xu
    Ma, Li
    Wang, Xiao-Jun
    Faguang Xuebao/Chinese Journal of Luminescence, 2021, 42 (01): : 91 - 97