Industrializing metal-organic frameworks: Scalable synthetic means and their transformation into functional materials

被引:102
|
作者
Teo, Wei Liang [1 ,2 ]
Zhou, Weigiang [3 ]
Qian, Cheng [1 ,2 ]
Zhao, Yanli [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 637371, Singapore
[3] Jiangsu Univ, Sch Chem & Chem Engn, Inst Green Chem & Chem Technol, Xuefu Rd 301, Zhenjiang 212013, Jiangsu, Peoples R China
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL SYNTHESIS; MICROWAVE SYNTHESIS; HIGH-PRESSURE; EFFICIENT; HKUST-1; SOLVENT; NANOPARTICLES; TEREPHTHALATE; PERFORMANCE; DEPOSITION;
D O I
10.1016/j.mattod.2021.01.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For over two decades, metal-organic frameworks (MOFs) have drawn huge attention in the scientific community, with the promise to solve a wide variety of real-world problems. Despite overwhelming interests for this unique class of porous materials, the progress towards actual utilization falls short of the expectation due to the challenging transition from academia to industry. In this review, an up-todate summary of the progress for MOF industrialization is presented. The latest developments in scalable production of MOFs and MOF processing from their powdered form are discussed to give a broad overview of the route to MOF commercialization. Their industrial utilization potentials are evaluated as well to provide useful insights for the future development in this field. This review aims to serve as an introduction for multidisciplinary research teams who are interested in developing a commercial market for MOF products.
引用
收藏
页码:170 / 186
页数:17
相关论文
共 50 条
  • [31] Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications
    Cai, Ze-Xing
    Wang, Zhong-Li
    Kim, Jeonghun
    Yamauchi, Yusuke
    ADVANCED MATERIALS, 2019, 31 (11)
  • [32] Transformation of Metal-Organic Frameworks/Coordination Polymers into Functional Nanostructured Materials: Experimental Approaches Based on Mechanistic Insights
    Lee, Kyung Joo
    Lee, Jae Hwa
    Jeoung, Sungeun
    Moone, Hoi Ri
    ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (11) : 2684 - 2692
  • [33] Functionalization of Metal-Organic Frameworks for Photoactive Materials
    Hao, Jina
    Xu, Xiaoyu
    Fei, Honghan
    Li, Liangchun
    Yan, Bing
    ADVANCED MATERIALS, 2018, 30 (17)
  • [34] Metal-Organic Frameworks: From Design to Materials
    Zhang, Jie-Peng
    Chen, Xiao-Ming
    METAL-ORGANIC FRAMEWORKS FOR PHOTONICS APPLICATIONS, 2014, 157 : 1 - 26
  • [35] Metal-organic frameworks as materials for applications in sensors
    Kustov, Leonid M.
    Isaeva, Vera I.
    Prech, Jan
    Bisht, Kamal Kumar
    MENDELEEV COMMUNICATIONS, 2019, 29 (04) : 361 - 368
  • [36] Thiazolothiazole based functional metal-organic frameworks
    Huang, Xing-Cai
    Kong, Jiao-Jiao
    CRYSTENGCOMM, 2025,
  • [37] Ligand design for functional metal-organic frameworks
    Almeida Paz, Filipe A.
    Klinowski, Jacek
    Vilela, Sergio M. F.
    Tome, Joao P. C.
    Cavaleiro, Jose A. S.
    Rocha, Joao
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (03) : 1088 - 1110
  • [38] Functional metal-organic frameworks for catalytic applications
    Xu, Chunping
    Fang, Ruiqi
    Luque, Rafael
    Chen, Liyu
    Li, Yingwei
    COORDINATION CHEMISTRY REVIEWS, 2019, 388 : 268 - 292
  • [39] Applications of Functional Metal-Organic Frameworks in Biosensors
    Du, Liping
    Chen, Wei
    Zhu, Ping
    Tian, Yulan
    Chen, Yating
    Wu, Chunsheng
    BIOTECHNOLOGY JOURNAL, 2021, 16 (02)
  • [40] METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS
    M. A. Agafonov
    E. V. Alexandrov
    N. A. Artyukhova
    G. E. Bekmukhamedov
    V. A. Blatov
    V. V. Butova
    Y. M. Gayfulin
    A. A. Garibyan
    Z. N. Gafurov
    Yu. G. Gorbunova
    L. G. Gordeeva
    M. S. Gruzdev
    A. N. Gusev
    G. L. Denisov
    D. N. Dybtsev
    Yu. Yu. Enakieva
    A. A. Kagilev
    A. O. Kantyukov
    M. A. Kiskin
    K. A. Kovalenko
    A. M. Kolker
    D. I. Kolokolov
    Y. M. Litvinova
    A. A. Lysova
    N. V. Maksimchuk
    Y. V. Mironov
    Yu. V. Nelyubina
    V. V. Novikov
    V. I. Ovcharenko
    A. V. Piskunov
    D. M. Polyukhov
    V. A. Polyakov
    V. G. Ponomareva
    A. S. Poryvaev
    G. V. Romanenko
    A. V. Soldatov
    M. V. Solovyeva
    A. G. Stepanov
    I. V. Terekhova
    O. Yu. Trofimova
    V. P. Fedin
    M. V. Fedin
    O. A. Kholdeeva
    A. Yu. Tsivadze
    U. V. Chervonova
    A. I. Cherevko
    V. F. Shul′gin
    E. S. Shutova
    D. G. Yakhvarov
    Journal of Structural Chemistry, 2022, 63 : 671 - 843