Photonic CMOS and quantum-dot lasers for ultra-low voltage and high-power applications: a novel approach for improved stability and quantum efficiency

被引:0
|
作者
Pan, James N. [1 ]
机构
[1] Amer Enterprise & License Co AELC, Linthicum, MD 21090 USA
关键词
Photonic; CMOS; laser; LED; VCSEL; nonlinear optics; quantum dot lasers; DPSSL; quantum cascade; APD;
D O I
10.1117/12.2574475
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A quantum dots photonic CMOS device includes a quantum dot laser in the MOSFET drain region, and a photon sensor in the MOSFET drain / well regions. The MOSFET, quantum dot laser, and photon sensor are fabricated as one integral device. When a voltage is applied to the MOSFET gate, and a voltage is applied to the drain, both MOSFET and quantum dot laser are on. Light from the quantum dot laser is absorbed by the embedded photon sensors (which can be avalanche photo diodes (APD)), which produce a large light current flowing back to the drain and laser as part of total output current. When the MOSFET is off, both quantum dot laser and photon sensor are off. Quantum dot laser is well known for its near OV laser diode forward voltage. As a field effective transistor, photonic CMOS is dominated by electric fiends and less dependent on temperatures. The embedded MOSFET, laser and APD form an amplifier that can substantially improve the external quantum efficiency of quantum dot lasers.
引用
收藏
页数:15
相关论文
共 46 条
  • [21] High-Power Tunnel-Injection 1060-nm InGaAs(Al)GaAs Quantum-Dot Lasers
    Pavelescu, Emil-Mihai
    Gilfert, C.
    Reithmaier, Johann P.
    Martin-Minguez, A.
    Esquivias, Ignacio
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (14) : 999 - 1001
  • [22] Ultra-low power all-optical switching with a single quantum dot in a photonic-crystal cavity
    Bajcsy, Michal
    Majumdar, Arka
    Englund, Dirk
    Vuckovic, Jelena
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VI, 2013, 8635
  • [23] Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers
    Klopf, F
    Reithmaier, JP
    Forchel, A
    APPLIED PHYSICS LETTERS, 2000, 77 (10) : 1419 - 1421
  • [24] High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers
    Wang, Shuai
    Lv, Zun-Ren
    Yang, Qiu-Lu
    Wang, Sheng-Lin
    Chai, Hong-Yu
    Meng, Lei
    Lu, Dan
    Ji, Chen
    Yang, Xiao-Guang
    Yang, Tao
    LASER & PHOTONICS REVIEWS, 2023, 17 (09)
  • [25] Obtaining high efficiency at low power using a quantum-dot microcavity light-emitting diode
    Huang, H
    Deppe, DG
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (06) : 674 - 679
  • [26] High-efficiency CMOS charge pump for ultra-low power RF energy harvesting applications
    Jayamon, Ashik C.
    Mukherjee, Ankur
    Teja, R. Sai Chandra
    Dutta, Ashudeb
    INTEGRATION-THE VLSI JOURNAL, 2024, 96
  • [27] Tunneling-injection High-power 1060-nm Quantum Dot Laser with Improved Temperature Stability
    Pavelescu, E. -M.
    Gilfert, C.
    Reithmaier, J. P.
    Martin-Minguez, A.
    Esquivias, I.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 738 - +
  • [28] Passive and active mode-locking of quantum-dot lasers for ultrashort, high power, and low noise optical pulse generation
    Choi, Myoung-Taek
    Kim, Ji-Myung
    Lee, Wangkuen
    Delfyett, Peter. J.
    ENABLING PHOTONICS TECHNOLOGIES FOR DEFENSE, SECURITY, AND AEROSPACE APPLICATIONS II, 2006, 6243
  • [29] Temperature characteristics of low-threshold high-efficiency quantum-dot lasers with the emission wavelength from 1.25 to 1.29 μm
    Novikov, II
    Maksimov, MV
    Shernyakov, YM
    Gordeev, NY
    Kovsh, AR
    Zhukov, AE
    Mikhrin, SS
    Maleev, NA
    Vasil'ev, AP
    Ustinov, VM
    Alferov, ZI
    Ledentsov, NN
    Bimberg, D
    SEMICONDUCTORS, 2003, 37 (10) : 1239 - 1242
  • [30] Temperature characteristics of low-threshold high-efficiency quantum-dot lasers with the emission wavelength from 1.25 to 1.29 µm
    I. I. Novikov
    M. V. Maksimov
    Yu. M. Shernyakov
    N. Yu. Gordeev
    A. R. Kovsh
    A. E. Zhukov
    S. S. Mikhrin
    N. A. Maleev
    A. P. Vasil’ev
    V. M. Ustinov
    Zh. I. Alferov
    N. N. Ledentsov
    D. Bimberg
    Semiconductors, 2003, 37 : 1239 - 1242