Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment

被引:4
|
作者
Holmes, Mark [1 ]
Salisbury, Thomas S. [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
[2] York Univ, Dept Math & Stat, N York, ON, Canada
来源
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
random walk; non-elliptic random environment; zero-one law; ballisticity; invariance principle; PLANAR RANDOM-WALKS; ZERO-ONE LAW; PERCOLATION PROBABILITY; ORIENTED PERCOLATION; DIMENSIONS; BEHAVIOR; EXPONENTS;
D O I
10.1214/17-EJP107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behaviour of random walks in i.i.d. non-elliptic random environments on Z(d). Standard conditions for ballisticity and the central limit theorem require ellipticity, and are typically non-local. We use oriented percolation and martingale arguments to find non-trivial local conditions for ballisticity and an annealed invariance principle in the non-elliptic setting. The use of percolation allows certain non-elliptic models to be treated even though ballisticity has not been proved for elliptic perturbations of these models.
引用
收藏
页数:18
相关论文
共 50 条