Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension

被引:52
|
作者
Calvez, Vincent [1 ]
Corrias, Lucilla [2 ]
Ebde, Mohamed Abderrahman [3 ]
机构
[1] Ecole Normale Super Lyon, CNRS, Unite Math Pures & Appl, UMR 5669, F-69364 Lyon 07, France
[2] Univ Evry Val Essonne, Dept Math, Evry, France
[3] Univ Paris 13, CNRS, Inst Galilee, Lab Anal Geometrie & Applicat,UMR 7539, F-93430 Villetaneuse, France
关键词
Blow-up; Chemotaxis; Energy methods; Global weak solutions; Local weak solutions; Parabolic systems; TIME AGGREGATION; CHEMOTAXIS MODEL; DIFFUSION; SYSTEM; SOBOLEV; MASS;
D O I
10.1080/03605302.2012.655824
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the analysis of the classical Keller-Segel system over R-d, d >= 3. We describe as much as possible the dynamics of the system characterized by various criteria, both in the parabolic-elliptic case and in the fully parabolic case. The main results in the parabolic-elliptic case are: local existence without smallness assumption on the initial density and a quantified blow-up rate, global existence under an improved smallness condition and comparison of blow-up criteria. A new concentration phenomenon for the fully parabolic case is also given.
引用
收藏
页码:561 / 584
页数:24
相关论文
共 50 条
  • [2] Existence and Stability of Infinite Time Blow-Up in the Keller-Segel System
    Davila, Juan
    del Pino, Manuel
    Dolbeault, Jean
    Musso, Monica
    Wei, Juncheng
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (04)
  • [3] Blow-up of solutions to the Keller-Segel model with tensorial flux in high dimensions
    Cuentas, Valeria
    Espejo, Elio
    Suzuki, Takashi
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 154
  • [4] Global existence versus blow-up in a high dimensional Keller-Segel equation with degenerate diffusion and nonlocal aggregation
    Hong, Liang
    Wang, Wei
    Zheng, Sining
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 116 : 1 - 18
  • [5] THE TWO-DIMENSIONAL KELLER-SEGEL MODEL AFTER BLOW-UP
    Dolbeault, Jean
    Schmeiser, Christian
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 109 - 121
  • [6] Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant
    Jiang, Jie
    Wu, Hao
    Zheng, Songmu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (08) : 5432 - 5464
  • [7] EXACT CRITERION FOR GLOBAL EXISTENCE AND BLOW UP TO A DEGENERATE KELLER-SEGEL SYSTEM
    Chen, Li
    Wang, Jinhuan
    [J]. DOCUMENTA MATHEMATICA, 2014, 19 : 103 - 120
  • [8] Nondegeneracy of blow-up points for the parabolic Keller-Segel system
    Mizoguchi, Noriko
    Souplet, Philippe
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (04): : 851 - 875
  • [9] Volume effects in the Keller-Segel model: energy estimates preventing blow-up
    Calvez, Vincent
    Carrillo, Jose A.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02): : 155 - 175
  • [10] Global well-posedness, blow-up phenomenon and ill-posedness for the hyperbolic Keller-Segel equations
    Meng, Zhiying
    Nie, Yao
    Ye, Weikui
    Yin, Zhaoyang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 413 : 828 - 850