Nondegeneracy of blow-up points for the parabolic Keller-Segel system

被引:238
|
作者
Mizoguchi, Noriko [1 ,2 ]
Souplet, Philippe [3 ]
机构
[1] Tokyo Gakugei Univ, Dept Math, Koganei, Tokyo 1848501, Japan
[2] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol PRESTO, Tokyo, Japan
[3] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
关键词
Keller-Segel system; Blow-up; Nondegeneracy; ELLIPTIC SYSTEM; CHEMOTAXIS; MODEL; BEHAVIOR; AGGREGATION; EXISTENCE;
D O I
10.1016/j.anihpc.2013.07.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the parabolic Keller-Segel system {u(t) = del center dot (del u - u(m)del v) in Omega x (0, T), Gamma v(t) - Delta v - lambda v + u in Omega x (0, T), in a domain Omega of R-N with N >= 1, where m, Gamma > 0, lambda >= 0 are constants and T > 0. When Omega not equal R-N, we impose the Neumann boundary conditions on the boundary. Under suitable assumptions, we prove the local nondegeneracy of blow-up points. This seems new even for the classical Keller Segel system (m = 1). Lower global blow-up estimates are also obtained. In the singular case 0 <m < 1, as a prerequisite, local existence and regularity properties are established. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:851 / 875
页数:25
相关论文
共 50 条