Group k-Sparse Temporal Convolutional Neural Networks: Unsupervised Pretraining for Video Classification

被引:1
|
作者
Milacski, Zoltan A. [1 ]
Poczos, Barnabas [2 ]
Lorincz, Andras [1 ]
机构
[1] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
关键词
group sparsity; temporal; convolutional neural networks; unsupervised learning; video data;
D O I
10.1109/ijcnn.2019.8852057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose Group k-Sparse Temporal Convolutional Neural Networks for unsupervised pretraining using video data. Our work is the first to consider the recurrent extension of structured sparsity, thus enhancing representational power and explainability. We show that our architecture is able to outperform several state-of-the-art baselines on Rotated MNIST, Scanned CIFAR-10, COIL-100 and NEC Animal pretraining benchmarks for video classification using limited labeled data.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Convolutional Drift Networks for Video Classification
    Graham, Dillon
    Langroudi, Seyed Hamed Fatemi
    Kanan, Christopher
    Kudithipudi, Dhireesha
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 109 - 116
  • [32] SUnCNN: Sparse Unmixing Using Unsupervised Convolutional Neural Network
    Rasti, Behnood
    Koirala, Bikram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] SpaRSE-BIM: Classification of IFC-based geometry via sparse convolutional neural networks
    Emunds, Christoph
    Pauen, Nicolas
    Richter, Veronika
    Frisch, Jerome
    van Treeck, Christoph
    ADVANCED ENGINEERING INFORMATICS, 2022, 53
  • [34] Unsupervised pattern classification by neural networks
    Hamad, D
    Firmin, C
    Postaire, JG
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1996, 41 (1-2) : 109 - 116
  • [35] Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks
    Chen, T.
    Grabs, E.
    Petersons, E.
    Efrosinin, D.
    Ipatovs, A.
    Bogdanovs, N.
    Rjazanovs, D.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2022, 56 (05) : 455 - 466
  • [36] Features Extraction for Live Streaming Video Classification with Deep and Convolutional Neural Networks
    Grabs, Elans
    Chen, Tianhua
    Petersons, Ernests
    Efrosinin, Dmitry
    Ipatovs, Aleksandrs
    Kluga, Janis
    Culkovs, Dmitrijs
    2021 IEEE WORKSHOP ON MICROWAVE THEORY AND TECHNIQUES IN WIRELESS COMMUNICATIONS, MTTW'21, 2021, : 58 - 63
  • [37] Unsupervised PulseNet: Automated Pruning of Convolutional Neural Networks by K-Means Clustering
    Browne, David
    Giering, Michael
    Prestwich, Steven
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT I, 2022, 13163 : 172 - 184
  • [38] Multiclass Live Streaming Video Quality Classification Based on Convolutional Neural Networks
    T. Chen
    E. Grabs
    E. Petersons
    D. Efrosinin
    A. Ipatovs
    N. Bogdanovs
    D. Rjazanovs
    Automatic Control and Computer Sciences, 2022, 56 : 455 - 466
  • [39] A Guided Method for Improving the Video Human Action Classification in Convolutional Neural Networks
    Mao L.
    Chen S.
    Yang D.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2021, 46 (08): : 1241 - 1246
  • [40] Interleaved Structured Sparse Convolutional Neural Networks
    Xie, Guotian
    Wang, Jingdong
    Zhang, Ting
    Lai, Jianhuang
    Hong, Richang
    Qi, Guo-Jun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8847 - 8856