Almost prime orders of CM elliptic curves modulo p

被引:0
|
作者
Urroz, Jorge Jimenez [1 ]
机构
[1] Univ Montreal, CRM, Montreal, PQ H3C 3J7, Canada
来源
ALGORITHMIC NUMBER THEORY | 2008年 / 5011卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an elliptic curve over Q with complex multiplication by OK, the ring of integers of the quadratic imaginary field K, we analyze the integer d(E) =gcd{|E(F-p)| : p splits in O-K}, where |E(F-p)| is the size of the group of rational IF points, and prove that it can be bigger than the common factor that comes from the torsion of the curve. Then, we prove that # {p <= x, p splits in O-K : 1/d(E) |E(F-p)| = P-2} >> x/(log x)(2) hence extending the results in [16]. This is the best known result in the direction of the Koblitz conjecture about the primality of |E(F-p)|.
引用
收藏
页码:74 / 87
页数:14
相关论文
共 50 条
  • [31] ELLIPTIC CURVES OF PRIME CONDUCTOR
    BOLLING, R
    MATHEMATISCHE NACHRICHTEN, 1977, 80 : 253 - 278
  • [32] Extreme central L-values of almost prime quadratic twists of elliptic curves
    Hua, Shenghao
    Huang, Bingrong
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (12) : 2755 - 2766
  • [33] Extreme central L-values of almost prime quadratic twists of elliptic curves
    Shenghao Hua
    Bingrong Huang
    Science China(Mathematics), 2023, 66 (12) : 2755 - 2766
  • [34] Extreme central L-values of almost prime quadratic twists of elliptic curves
    Shenghao Hua
    Bingrong Huang
    Science China Mathematics, 2023, 66 : 2755 - 2766
  • [35] p∞-Selmer groups and rational points on CM elliptic curves
    Burungale, Ashay
    Castella, Francesc
    Skinner, Christopher
    Tian, Ye
    ANNALES MATHEMATIQUES DU QUEBEC, 2022, 46 (02): : 325 - 346
  • [36] ALMOST ALL ELLIPTIC CURVES ARE SERRE CURVES
    Jones, Nathan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (03) : 1547 - 1570
  • [37] Numbers Divisible by a Large Shifted Prime and Large Torsion Subgroups of CM Elliptic Curves
    McNew, Nathan
    Pollack, Paul
    Pomerance, Carl
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (18) : 5525 - 5553
  • [38] Products of CM elliptic curves
    Kani, Ernst
    COLLECTANEA MATHEMATICA, 2011, 62 (03) : 297 - 339
  • [39] Products of CM elliptic curves
    Ernst Kani
    Collectanea mathematica, 2011, 62 : 297 - 339
  • [40] ON THE DE RHAM AND p-ADIC REALIZATIONS OF THE ELLIPTIC POLYLOGARITHM FOR CM ELLIPTIC CURVES
    Bannai, Kenichi
    Kobayashi, Shinichi
    Tsuji, Takeshi
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (02): : 185 - 234