Hyperspectral Image Classification via Low-Rank and Sparse Representation With Spectral Consistency Constraint

被引:19
|
作者
Pan, Lei [1 ]
Li, Heng-Chao [1 ]
Meng, Hua [2 ]
Li, Wei [3 ]
Du, Qian [4 ]
Emery, William J. [5 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Sichuan, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[5] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) classification; low-rank and sparse representation (LRSR); spatial information; spectral consistency constraint (SCC);
D O I
10.1109/LGRS.2017.2753401
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, a low-rank and sparse representation classifier with a spectral consistency constraint (LRSRC-SCC) is proposed. Different from the SRC that represents samples individually, LRSRC-SCC reconstructs samples jointly and is able to capture the local and global structures simultaneously. In this proposed classifier, an adaptive spectral constraint is imposed on both the low-rank and sparse terms so as to better reveal the data structure and enhance its discriminative power. In addition, the alternating direction method is introduced to solve the underlying minimization problem, in which, more importantly, the subobjective function associated with the low-rank term is optimized based on the rank equivalence between a matrix and its Gram matrix, resulting in a closed-form solution. Finally, LRSRC-SCC is extended to LRSRC-SCCE for fully exploiting the spatial information. Experimental results on two hyper-spectral data sets demonstrate that the proposed LRSRC-SCC and LRSRC-SCCE methods outperform some state-of-the-art methods.
引用
下载
收藏
页码:2117 / 2121
页数:5
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint
    Zhao, Yong-Qiang
    Yang, Jingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 296 - 308
  • [2] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [3] Hyperspectral Unmixing via Low-Rank Representation with Space Consistency Constraint and Spectral Library Pruning
    Zhang, Xiangrong
    Li, Chen
    Zhang, Jingyan
    Chen, Qimeng
    Feng, Jie
    Jiao, Licheng
    Zhou, Huiyu
    REMOTE SENSING, 2018, 10 (02)
  • [4] Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification
    Ding, Yun
    Chong, Yanwen
    Pan, Shaoming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5609 - 5622
  • [5] Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification
    Zhaohui XUE
    Xiangyu NIE
    Journal of Geodesy and Geoinformation Science, 2022, (01) : 73 - 90
  • [6] Latent low-rank representation with sparse consistency constraint for infrared and visible image fusion
    Tao, Tiwei
    Liu, Ming-Xia
    Hou, Yingkun
    Wang, Pengfei
    Yang, Deyun
    Zhang, Qiang
    OPTIK, 2022, 261
  • [7] Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint
    Han, Hongwei
    Wang, Guxi
    Wang, Maozhi
    Miao, Jiaqing
    Guo, Si
    Chen, Ling
    Zhang, Mingyue
    Guo, Ke
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5704 - 5718
  • [8] KERNEL LOW-RANK REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Du, Lu
    Wu, Zebin
    Xu, Yang
    Liu, Wei
    Wei, Zhihui
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 477 - 480
  • [9] Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
    Peng, Jiangtao
    Sun, Weiwei
    Li, Heng-Chao
    Li, Wei
    Meng, Xiangchao
    Ge, Chiru
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (01) : 10 - 43
  • [10] Local Low-Rank and Sparse Representation for Hyperspectral Image Denoising
    Ma, Guanqun
    Huang, Ting-Zhu
    Haung, Jie
    Zheng, Chao-Chao
    IEEE ACCESS, 2019, 7 : 79850 - 79865