Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum

被引:9
|
作者
Mswahili, Medard Edmund [1 ]
Martin, Gati Lother [1 ]
Woo, Jiyoung [1 ]
Choi, Guang J. [2 ]
Jeong, Young-Seob [3 ]
机构
[1] Soonchunhyang Univ, Dept ICT Convergence, Asan 31538, South Korea
[2] Soonchunhyang Univ, Dept Pharmaceut Engn, Asan 31538, South Korea
[3] Chungbuk Natl Univ, Dept Comp Engn, Cheongju 28644, South Korea
关键词
antimalarial drug; machine learning; plasmodium falciparum; molecular descriptor; drug discovery; feature selection; PaDEL; ARTEMISININ RESISTANCE; MALARIA; AUTOCORRELATION; VIRULENCE; BIOLOGY; PACKAGE; IMPACT;
D O I
10.3390/biom11121750
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Malaria remains by far one of the most threatening and dangerous illnesses caused by the plasmodium falciparum parasite. Chloroquine (CQ) and first-line artemisinin-based combination treatment (ACT) have long been the drug of choice for the treatment and controlling of malaria; however, the emergence of CQ-resistant and artemisinin resistance parasites is now present in most areas where malaria is endemic. In this work, we developed five machine learning models to predict antimalarial bioactivities of a drug against plasmodium falciparum from the features (i.e., molecular descriptors values) obtained from PaDEL software from SMILES of compounds and compare the machine learning models by experiments with our collected data of 4794 instances. As a consequence, we found that three models amongst the five, namely artificial neural network (ANN), extreme gradient boost (XGB), and random forest (RF), outperform the others in terms of accuracy while observing that, using roughly a quarter of the promising descriptors picked by the feature selection algorithm, the five models achieved equivalent and comparable performance. Nevertheless, the contribution of all molecular descriptors in the models was investigated through the comparison of their rank values by the feature selection algorithm and found that the most potent and relevant descriptors which come from the 'Autocorrelation' module contributed more while the 'Atom type electrotopological state' contributed the least to the model.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Plasmodium falciparum: new molecular targets with potential for antimalarial drug development
    Gardiner, Donald L.
    Skinner-Adams, Tina S.
    Brown, Christopher L.
    Andrews, Katherine T.
    Stack, Colin M.
    McCarthy, James S.
    Dalton, John P.
    Trenholme, Katharine R.
    EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2009, 7 (09) : 1087 - 1098
  • [2] Antimalarial Drug Combination Predictions Using the Machine Learning Synergy Predictor (MLSyPred©) tool
    Abiel Roche-Lima
    Angélica M. Rosado-Quiñones
    Roberto A. Feliu-Maldonado
    María Del Mar Figueroa-Gispert
    Jennifer Díaz-Rivera
    Roberto G. Díaz-González
    Kelvin Carrasquillo-Carrion
    Brenda G. Nieves
    Emilee E. Colón-Lorenzo
    Adelfa E. Serrano
    Acta Parasitologica, 2024, 69 : 415 - 425
  • [3] Insight into molecular diagnosis for antimalarial drug resistance of Plasmodium falciparum parasites: A review
    Zhong, Ao
    Zhang, Han
    Li, Jian
    ACTA TROPICA, 2023, 241
  • [4] Antimalarial Drug Combination Predictions Using the Machine Learning Synergy Predictor (MLSyPred©) tool
    Roche-Lima, Abiel
    Rosado-Quinones, Angelica M.
    Feliu-Maldonado, Roberto A.
    Figueroa-Gispert, Maria Del Mar
    Diaz-Rivera, Jennifer
    Diaz-Gonzalez, Roberto G.
    Carrasquillo-Carrion, Kelvin
    Nieves, Brenda G.
    Colon-Lorenzo, Emilee E.
    Serrano, Adelfa E.
    ACTA PARASITOLOGICA, 2024, 69 (01) : 415 - 425
  • [5] In vitro antimalarial activity of metalloporphyrins against Plasmodium falciparum
    Khurshida Begum
    Hye-Sook Kim
    Veena Kumar
    Igor Stojiljkovic
    Yusuke Wataya
    Parasitology Research, 2003, 90 : 221 - 224
  • [6] Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum
    Panda S.
    Rout J.R.
    Pati P.
    Ranjit M.
    Sahoo S.L.
    Journal of Parasitic Diseases, 2018, 42 (1) : 22 - 27
  • [7] ANTIMALARIAL DRUG TRIALS ON A MULTIRESISTANT STRAIN OF PLASMODIUM FALCIPARUM
    JEFFERY, GM
    SKINNER, JC
    COLLINS, WE
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 1963, 12 (06): : 844 - &
  • [8] In vitro antimalarial activity of metalloporphyrins against Plasmodium falciparum
    Begum, K
    Kim, HS
    Kumar, V
    Stojiljkovic, I
    Wataya, Y
    PARASITOLOGY RESEARCH, 2003, 90 (03) : 221 - 224
  • [9] Helicases -: feasible antimalarial drug target for Plasmodium falciparum
    Tuteja, Renu
    FEBS JOURNAL, 2007, 274 (18) : 4699 - 4704
  • [10] Antimalarial drug susceptibility testing of Plasmodium falciparum in Brazil using a radioisotope method
    Cerutti, C
    Marques, C
    de Alencar, FEC
    Durlacher, RR
    Alween, A
    Segurado, AAC
    Pang, LW
    Zalis, MG
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 1999, 94 (06): : 803 - 809