LARGE DATA LOCAL WELL-POSEDNESS FOR A CLASS OF KDV-TYPE EQUATIONS

被引:0
|
作者
Harrop-Griffiths, Benjamin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
NONLINEAR DISPERSIVE EQUATIONS; SCHRODINGER-EQUATIONS; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we consider the Cauchy problem with large initial data for an equation of the form (partial derivative(t) + partial derivative(3)(x)) u = F(u, u(x), u(xx)) where F is a polynomial with no constant or linear terms. Local well-posedness was established in weighted Sobolev spaces by Kenig-Ponce-Vega. In this paper we prove local well-posedness in a translation invariant subspace of Hs by adapting the result of Marzuola-Metcalfe-Tataru on quasilinear Schrodinger equations.
引用
收藏
页码:755 / 773
页数:19
相关论文
共 50 条