Machine-learned phase diagrams of generalized Kitaev honeycomb magnets

被引:10
|
作者
Rao, Nihal [1 ,2 ]
Liu, Ke [1 ,2 ]
Machaczek, Marc [1 ,2 ]
Pollet, Lode [1 ,2 ,3 ]
机构
[1] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
关键词
Antiferromagnetics - Ferromagnets - Heisenberg interaction - Honeycomb lattices - Low temperatures - Magnetic orders - Restricted parameter space - Unsupervised machine learning;
D O I
10.1103/PhysRevResearch.3.033223
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a recently developed interpretable and unsupervised machine-learning method, the tensorial kernel support vector machine, to investigate the low-temperature classical phase diagram of a generalized HeisenbergKitaev-Gamma (J-K-F) model on a honeycomb lattice. Aside from reproducing phases reported by previous quantum and classical studies, our machine finds a hitherto missed nested zigzag-stripy order and establishes the robustness of a recently identified modulated S-3 x Z(3) phase, which emerges through the competition between the Kitaev and Gamma spin liquids, against Heisenberg interactions. The results imply that, in the restricted parameter space spanned by the three primary exchange interactions-J, K, and Gamma, the representative Kitaev material alpha-RuCl3 lies close to the boundaries of several phases, including a simple ferromagnet, the unconventional S-3 x Z(3), and nested zigzag-stripy magnets. A zigzag order is stabilized by a finite Gamma' and/or J(3) term, whereas the four magnetic orders may compete in particular if Gamma' is antiferromagnetic.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine-learned potentials for eucryptite: A systematic comparison
    Jörg-Rüdiger Hill
    Wolfgang Mannstadt
    [J]. Journal of Materials Research, 2023, 38 : 5188 - 5197
  • [22] English morphological analysis with machine-learned rules
    Tang, Xuri
    [J]. PACLIC 20: Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation, 2006, : 35 - 41
  • [23] Machine-learned acceleration for molecular dynamics in CASTEP
    Stenczel, Tamas K.
    El-Machachi, Zakariya
    Liepuoniute, Guoda
    Morrow, Joe D.
    Bartok, Albert P.
    Probert, Matt I. J.
    Csanyi, Gabor
    Deringer, Volker L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (04):
  • [24] How to validate machine-learned interatomic potentials
    Morrow, Joe D.
    Gardner, John L. A.
    Deringer, Volker L.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (12):
  • [25] Machine-Learned Coarse-Grained Models
    Bejagam, Karteek K.
    Singh, Samrendra
    An, Yaxin
    Deshmukh, Sanket A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4667 - 4672
  • [26] A local environment descriptor for machine-learned density functional theory at the generalized gradient approximation level
    Ji, Hyunjun
    Jung, Yousung
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [27] Kitaev Magnetism in Co-Based Two-Dimensional Honeycomb Magnets
    Kim, Heung-Sik
    [J]. JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2022, 32 (06): : 240 - 245
  • [28] Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials
    Carla Verdi
    Ferenc Karsai
    Peitao Liu
    Ryosuke Jinnouchi
    Georg Kresse
    [J]. npj Computational Materials, 7
  • [29] Phase transitions of zirconia: Machine-learned force fields beyond density functional theory
    Liu, Peitao
    Verdi, Carla
    Karsai, Ferenc
    Kresse, Georg
    [J]. PHYSICAL REVIEW B, 2022, 105 (06)
  • [30] Machine-Learned Classifiers for Protocol Selection on a Shared Network
    Anvari, Hamidreza
    Huard, Jesse
    Lu, Paul
    [J]. MACHINE LEARNING FOR NETWORKING, 2019, 11407 : 98 - 116