Machine-learned phase diagrams of generalized Kitaev honeycomb magnets

被引:10
|
作者
Rao, Nihal [1 ,2 ]
Liu, Ke [1 ,2 ]
Machaczek, Marc [1 ,2 ]
Pollet, Lode [1 ,2 ,3 ]
机构
[1] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, Theresienstr 37, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Shanghai Jiao Tong Univ, Wilczek Quantum Ctr, Sch Phys & Astron, Shanghai 200240, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
关键词
Antiferromagnetics - Ferromagnets - Heisenberg interaction - Honeycomb lattices - Low temperatures - Magnetic orders - Restricted parameter space - Unsupervised machine learning;
D O I
10.1103/PhysRevResearch.3.033223
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a recently developed interpretable and unsupervised machine-learning method, the tensorial kernel support vector machine, to investigate the low-temperature classical phase diagram of a generalized HeisenbergKitaev-Gamma (J-K-F) model on a honeycomb lattice. Aside from reproducing phases reported by previous quantum and classical studies, our machine finds a hitherto missed nested zigzag-stripy order and establishes the robustness of a recently identified modulated S-3 x Z(3) phase, which emerges through the competition between the Kitaev and Gamma spin liquids, against Heisenberg interactions. The results imply that, in the restricted parameter space spanned by the three primary exchange interactions-J, K, and Gamma, the representative Kitaev material alpha-RuCl3 lies close to the boundaries of several phases, including a simple ferromagnet, the unconventional S-3 x Z(3), and nested zigzag-stripy magnets. A zigzag order is stabilized by a finite Gamma' and/or J(3) term, whereas the four magnetic orders may compete in particular if Gamma' is antiferromagnetic.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Rosenbrock, Conrad W.
    Gubaev, Konstantin
    Shapeev, Alexander V.
    Partay, Livia B.
    Bernstein, Noam
    Csanyi, Gabor
    Hart, Gus L. W.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [2] Machine-learned interatomic potentials for alloys and alloy phase diagrams
    Conrad W. Rosenbrock
    Konstantin Gubaev
    Alexander V. Shapeev
    Livia B. Pártay
    Noam Bernstein
    Gábor Csányi
    Gus L. W. Hart
    [J]. npj Computational Materials, 7
  • [3] Machine-learned tuning of artificial Kitaev chains from tunneling spectroscopy measurements
    Benestad, Jacob
    Tsintzis, Athanasios
    Souto, Ruben Seoane
    Leijnse, Martin
    van Nieuwenburg, Evert
    Danon, Jeroen
    [J]. PHYSICAL REVIEW B, 2024, 110 (07)
  • [4] Topological phase diagrams of in-plane field polarized Kitaev magnets
    Chern, Li Ern
    Castelnovo, Claudio
    [J]. PHYSICAL REVIEW B, 2024, 109 (18)
  • [5] The machine-learned radii of atoms
    Nikolaienko, Tymofii Yu.
    Bulavin, Leonid A.
    [J]. COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1204
  • [6] Kitaev-like honeycomb magnets: Global phase behavior and emergent effective models
    Rusnacko, Juraj
    Gotfryd, Dorota
    Chaloupka, Jiri
    [J]. PHYSICAL REVIEW B, 2019, 99 (06)
  • [7] Machine-learned digital phase switch for sustainable chemical production
    Teng, Sin Yong
    Galvis, Leonardo
    Blanco, Carlos Mendez
    Ozkan, Leyla
    Barendse, Ruud
    Postma, Geert
    Jansen, Jeroen
    [J]. JOURNAL OF CLEANER PRODUCTION, 2023, 382
  • [8] Phase Transitions in Inorganic Halide Perovskites from Machine-Learned Potentials
    Fransson, Erik
    Wiktor, Julia
    Erhart, Paul
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (28): : 13773 - 13781
  • [9] Evaluation of Rate Coefficients in the Gas Phase Using Machine-Learned Potentials
    Marti, Carles
    Devereux, Christian
    Najm, Habib N.
    Zador, Judit
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (10): : 1958 - 1971
  • [10] Machine-Learned Premise Selection for Lean
    Piotrowski, Bartosz
    Mir, Ramon Fernandez
    Ayers, Edward
    [J]. AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 175 - 186