A NEW APPROACH TO SIGNAL PROCESSING OF SPATIOTEMPORAL DATA

被引:0
|
作者
Slawinska, Joanna [1 ]
Ourmazd, Abbas [1 ]
Giannakis, Dimitrios [2 ]
机构
[1] Univ Wisconsin, Dept Phys, Milwaukee, WI 53211 USA
[2] NYU, Courant Inst Math Sci, New York, NY USA
基金
美国国家科学基金会;
关键词
Signal processing; kernel methods; vector-valued functions; multivariate time series; dynamical systems; spatiotemporal patterns; INDO-PACIFIC VARIABILITY; SPECTRAL-ANALYSIS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a method combining ideas from the theory of operator-valued kernels with delay-coordinate embedding techniques in dynamical systems capable of identifying spatiotemporal patterns, without prior knowledge of the state space or the dynamical laws of the system generating the data. The approach is particularly powerful for systems in which characteristic patterns cannot be readily decomposed into temporal and spatial coordinates. Using simulated and observed sea-surface temperature data, we show our approach reveals coherent patterns of intermittent character with significantly higher skill than conventional analytical methods based on decomposing signals into separable spatial and temporal patterns.
引用
收藏
页码:338 / 342
页数:5
相关论文
共 50 条
  • [21] Quasioptimal Spatiotemporal Signal Processing Algorithm for Radar Imaging
    Pavlikov, V. V.
    Nechyporuk, M., V
    Van Huu, Nguyen
    Sobkolov, A. D.
    15TH INTERNATIONAL CONFERENCE ON ADVANCED TRENDS IN RADIOELECTRONICS, TELECOMMUNICATIONS AND COMPUTER ENGINEERING (TCSET - 2020), 2020, : 559 - 564
  • [22] EFFECT OF SAMPLE DISPLACEMENT IN SPATIOTEMPORAL SIGNAL-PROCESSING
    ALLEBACH, JP
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1736 - 1736
  • [23] Mixture of Set Membership Filters Approach for Big Data Signal Processing
    Kilic, O. Faith
    Sayin, M. Omer
    Delibalta, Ibrahim
    Kozat, Suleyman S.
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1217 - 1220
  • [24] A Signal Processing Approach for Cyber Data Classification with Deep Neural Networks
    Cox, Jonathan A.
    James, Conrad D.
    Aimone, James B.
    COMPLEX ADAPTIVE SYSTEMS, 2015, 2015, 61 : 349 - 354
  • [25] A Signal Processing Approach to Fourier Analysis of Ranking Data: The Importance of Phase
    Kakarala, Ramakrishna
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) : 1518 - 1527
  • [26] Signal Processing for Big Data
    Giannakis, Georgios B.
    Bach, Francis
    Cendrillon, Raphael
    Mahoney, Michael
    Neville, Jennifer
    IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (05) : 15 - 16
  • [27] DATA AND SIGNAL PROCESSING FOR BUSINESS
    Pavaloiu, I. B.
    Neagu, A. M.
    Mustafa, C.
    Dascalu, M., I
    Dragoi, G.
    Marin, I
    Mitrea, A. D.
    Mateescu, L. M.
    11TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI2018), 2018, : 6147 - 6150
  • [28] InSAR Signal and Data Processing
    Xing, Mengdao
    Lu, Zhong
    Yu, Hanwen
    SENSORS, 2020, 20 (13) : 1 - 3
  • [29] Signal Processing for Big Data
    Giannakis, Georgios B.
    2014 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2014, : 9 - 9
  • [30] Signal processing for hyperspectral data
    Varshney, Pramod K.
    Arora, Manoj K.
    Rao, Raghuveer M.
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 6039 - 6042