Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering

被引:53
|
作者
Wan, Yizao [1 ]
Zuo, Guifu [1 ]
Yu, Feng [1 ]
Huang, Yuan [1 ]
Ren, Kaijing [2 ]
Luo, Honglin [1 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Hosp, Dept Joint Surg, Tianjin 300211, Peoples R China
来源
SURFACE & COATINGS TECHNOLOGY | 2011年 / 205卷 / 8-9期
基金
中国国家自然科学基金;
关键词
Nanofibers; Hydroxyapatite; Biomineralization; Tissue engineering; IN-VITRO; REGENERATIVE MEDICINE; NANOTUBE SCAFFOLDS; HYDROXYAPATITE; APATITE; BIOCOMPATIBILITY; NANOTECHNOLOGY; NANOCOMPOSITES; CARBONIZATION; OSTEOBLASTS;
D O I
10.1016/j.surfcoat.2010.11.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanofibers exist widely in human tissue and designing three-dimensional (3-D) nanofibrous tissue engineering has important implications. For the first time to our knowledge, this article described the construction of 3-D nanofibrous carbon scaffolds for potential bone tissue regeneration which are composed of carbon nanofiber (CNF) and hydroxyapatite (HAp). CNFs were obtained by carbonization under inert conditions with 3-D bacterial cellulose nanofibers as starting carbon sources. The resulting CNFs showed 3-D fibrous structural features with diameter ranging from 10 to 20 nm. In vitro biomineralization process was performed on the surface-treated 3-D CNFs. The resultant CNF/HAp composites were investigated using scanning electron microscopy, transmission electron microcopy, Raman spectroscopy, and X-ray diffraction. The results showed that surface treatment of CNFs in nitric acid promoted the mineralization and changed the morphology of HAp formed on CNFs. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2938 / 2946
页数:9
相关论文
共 50 条
  • [21] Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds
    Wan, Yizao
    Gao, Chuan
    Han, Ming
    Liang, Hui
    Ren, Kaijing
    Wang, Yulin
    Luo, Honglin
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (12) : 2643 - 2648
  • [22] Projection microfabrication of three-dimensional scaffolds for tissue engineering
    Han, Li-Hsin
    Mapili, Gazell
    Chen, Shaochen
    Roy, Krishnendu
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (02): : 0210051 - 0210054
  • [23] Design and development of three-dimensional scaffolds for tissue engineering
    Liu, C.
    Xia, Z.
    Czernuszka, J. T.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2007, 85 (A7): : 1051 - 1064
  • [24] Three-dimensional microfabrication system for scaffolds in tissue engineering
    Lee, Seung-Jae
    Kim, Byung
    Lee, Jin-Sang
    Kim, Sung-Won
    Kim, Min-Soo
    Kim, Joo Sung
    Lim, Geunbae
    Cho, Dong-Woo
    EXPERIMENTAL MECHANICS IN NANO AND BIOTECHNOLOGY, PTS 1 AND 2, 2006, 326-328 : 723 - +
  • [25] Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering
    Li-Hsin Han
    Shalu Suri
    Christine E. Schmidt
    Shaochen Chen
    Biomedical Microdevices, 2010, 12 : 721 - 725
  • [26] Three-dimensional macroporous graphene scaffolds for tissue engineering
    Lalwani, Gaurav
    D'agati, Michael
    Gopalan, Anu
    Rao, Manisha
    Schneller, Jessica
    Sitharaman, Balaji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 73 - 83
  • [27] Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering
    Han, Li-Hsin
    Suri, Shalu
    Schmidt, Christine E.
    Chen, Shaochen
    BIOMEDICAL MICRODEVICES, 2010, 12 (04) : 721 - 725
  • [28] Three-dimensional printing of multilayered tissue engineering scaffolds
    Bittner, Sean M.
    Guo, Jason L.
    Melchiorri, Anthony
    Mikos, Antonios G.
    MATERIALS TODAY, 2018, 21 (08) : 861 - 874
  • [29] Biomineralization in Three-Dimensional Scaffolds Based on Bacterial Nanocellulose for Bone Tissue Engineering: Feature Characterization and Stem Cell Differentiation
    Canas-Gutierrez, Ana
    Toro, Lenka
    Fornaguera, Cristina
    Borros, Salvador
    Osorio, Marlon
    Castro-Herazo, Cristina
    Arboleda-Toro, David
    POLYMERS, 2023, 15 (09)
  • [30] Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering
    Guan, Junjie
    Yang, Jun
    Dai, Junqi
    Qin, Yunhao
    Wang, Yang
    Guo, Yaping
    Ke, Qinfei
    Zhang, Changqing
    RSC ADVANCES, 2015, 5 (46): : 36175 - 36184