Soliton interactions of a (2+1)-dimensional nonlinear Schrodinger equation in a nonlinear photonic quasicrystal or Kerr medium

被引:1
|
作者
Xiao, Zi-Jian
Tian, Bo [1 ]
Wu, Xiao-Yu
Liu, Lei
Sun, Yan
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2017年 / 31卷 / 22期
基金
中国国家自然科学基金;
关键词
Nonlinear photonic quasicrystal; Vortex Airy beam in a Kerr medium; (2+1)-dimensional nonlinear Schrodinger equation; Soliton solutions; Symbolic computation; Hirota method; BACKLUND TRANSFORMATION; DARK SOLITON; PROPAGATION; WAVE; DYNAMICS; PHASE; GENERATION; PULSES; BRIGHT; ORDER;
D O I
10.1142/S0217984917501305
中图分类号
O59 [应用物理学];
学科分类号
摘要
Under investigation are the soliton interactions for a (2+1)-dimensional nonlinear Schrodinger equation, which can describe the dynamics of a nonlinear photonic quasicrystal or vortex Airy beam in a Kerr medium. With the symbolic computation and Hirota method, analytic bright N-soliton and dark two-soliton solutions are derived. Graphic description of the soliton properties and interactions in a nonlinear photonic quasicrystal or Kerr medium is done. Through the analysis on bright and dark one solitons, effects of the optical wavenumber/linear opposite wavenumber and nonlinear coefficient on the soliton amplitude and width are studied: when the absolute value of the optical wavenumber or linear opposite wavenumber increases, bright soliton amplitude and dark soliton width become smaller; nonlinear coefficient has the same in fluence on the bright soliton as that of the optical wavenumber or linear opposite wavenumber, but does not affect the dark soliton amplitude or width. Overtaking/periodic interactions between the bright two solitons and overtaking interactions between the dark two solitons are illustrated. Overtaking interactions show that the bright soliton with a larger amplitude moves faster and overtakes the smaller, while the dark soliton with a smaller amplitude moves faster and overtakes the larger. When the absolute value of the optical wavenumber or linear opposite wavenumber increases, the periodic-interaction period becomes longer. All the above interactions are elastic. Through the interactions, soliton amplitudes and shapes keep invariant except for some phase shifts.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Vector solitons for the (2+1)-dimensional coupled nonlinear Schrodinger system in the Kerr nonlinear optical fiber
    Sun, Yan
    Tian, Bo
    Qu, Qi-Xing
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Shan, Wen-Rui
    Jiang, Yan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [22] Multiple soliton solutions with chiral nonlinear Schrodinger's equation in (2+1)-dimensions
    Awan, Aziz Ullah
    Tahir, Muhammad
    Abro, Kashif Ali
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 85 : 68 - 75
  • [23] Special soliton structures in the (2+1)-dimensional nonlinear Schrodinger equation with radially variable diffraction and nonlinearity coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Xia, Yuzhou
    PHYSICAL REVIEW E, 2011, 83 (03):
  • [24] Optical solitons of (2+1)-dimensional nonlinear Schrodinger equation involving linear and nonlinear effects
    Matinfar, M.
    Hosseini, K.
    OPTIK, 2021, 228
  • [25] Exact soliton of (2+1)-dimensional fractional Schrodinger equation
    Rizvi, S. T. R.
    Ali, K.
    Bashir, S.
    Younis, M.
    Ashraf, R.
    Ahmad, M. O.
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 107 : 234 - 239
  • [26] Localized coherent soliton structures in a generalized (2+1)-dimensional nonlinear Schrodinger system
    Zheng, CL
    Sheng, ZM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4407 - 4414
  • [27] An integrable (2+1)-dimensional nonlinear Schrodinger system and its optical soliton solutions
    Hosseini, K.
    Sadri, K.
    Mirzazadeh, M.
    Salahshour, S.
    OPTIK, 2021, 229
  • [28] Darboux transformation and soliton solutions of the (2+1)-dimensional derivative nonlinear Schrodinger hierarchy
    Wen, Li-Li
    Zhang, Hai-Qiang
    NONLINEAR DYNAMICS, 2016, 84 (02) : 863 - 873
  • [29] Lax pair, interactions and conversions of the nonlinear waves for a (2+1)-dimensional nonlinear Schrodinger equation in a Heisenberg ferromagnetic spin chain
    Du, Xia-Xia
    Tian, Bo
    Tian, He-Yuan
    Sun, Yan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (07):
  • [30] Soliton-like solutions for the (2+1)-dimensional nonlinear evolution equation
    Zhang, JF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (02) : 315 - 318