Blowup of parabolic equations with additive noise

被引:1
|
作者
Lv, Guangying [1 ]
Wei, Jinlong [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
关键词
Blowup; Noise; Ito's formula; IMPACTS;
D O I
10.1016/j.aml.2021.107475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the blowup phenomenon of nonlinear parabolic equations with additive noise. We introduce a new method to study the blowup phenomenon on bounded domains. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux
    Xiang, Zhaoyin
    Mu, Chunlai
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (02) : 487 - 503
  • [32] ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS FOR HENON TYPE PARABOLIC EQUATIONS WITH EXPONENTIAL NONLINEARITY
    Chang, Caihong
    Zhang, Zhengce
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 2022 (42)
  • [33] Dense blowup for parabolic SPDEs
    Chen, Le
    Huang, Jingyu
    Khoshnevisan, D.
    Kim, Kunwoo
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [34] Pseudoparabolic equations with additive noise and applications
    Liaskos, K. B.
    Stratis, I. G.
    Yannacopoulos, A. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (08) : 963 - 985
  • [35] EFFICIENT SIMULATION OF NONLINEAR PARABOLIC SPDES WITH ADDITIVE NOISE
    Jentzen, Arnulf
    Kloeden, Peter
    Winkel, Georg
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (03): : 908 - 950
  • [36] A sufficient condition for blowup of solutions to a class of pseudo-parabolic equations with a nonlocal term
    Zhu, Xiaoli
    Li, Fuyi
    Liang, Zhanping
    Rong, Ting
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) : 3591 - 3606
  • [37] FRACTIONAL STOCHASTIC PARABOLIC EQUATIONS WITH FRACTIONAL NOISE
    Duan, Yubo
    Jiang, Yiming
    Wei, Yawei
    Zheng, Zimeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [38] FINAL TIME BLOWUP PROFILES FOR SEMILINEAR PARABOLIC EQUATIONS VIA CENTER MANIFOLD THEORY
    BEBERNES, J
    BRICHER, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) : 852 - 869
  • [39] Blowup and Blowup at Infinity for Quasilinear Wave Equations
    Alinhac, S.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (23) : 5361 - 5408
  • [40] Determination of blowup type in the parabolic–parabolic Keller–Segel system
    Noriko Mizoguchi
    Mathematische Annalen, 2020, 376 : 39 - 60