Multiple solutions of a nonlocal system with singular nonlinearities

被引:3
|
作者
Kratou, Mouna
Saoudi, Kamel [1 ]
AlShehri, Aisha
机构
[1] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dammam 31441, Saudi Arabia
关键词
Fractional Laplace operator; Nehari manifold; singular elliptic system; Multiple positive solutions; BREZIS-NIRENBERG RESULT; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EQUATIONS; LAPLACIAN;
D O I
10.1142/S0129167X21500725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the fractional Laplacian equation with singular nonlinearity: {(-Delta)(s)u = lambda a(x)vertical bar u vertical bar(q-2)u + 1-alpha/2-alpha-beta c(x)vertical bar u vertical bar(-alpha)vertical bar v vertical bar(1-beta) in Omega, (-Delta)(s)v = mu b(x)vertical bar v vertical bar(q-2)v + 1-beta/2-alpha-beta c(x)vertical bar u vertical bar(1-alpha)vertical bar v vertical bar(-beta) in Omega, u = v = 0 in R-N\Omega, where Omega is a bounded domain in R-n with smooth boundary partial differential partial derivative Omega, N > 2s, s is an element of (0, 1), 0 < alpha < 1, 0 < beta < 1, 1 < q < 2 < 2(s)*, 2(s)* = 2N/N-2s is the fractional Sobolev exponent, lambda,mu are two parameters, a,b,c is an element of C(<(Omega)over bar> ) are nonnegative weight functions, and (-Delta)(s) is the fractional Laplace operator. We use the Nehari manifold approach and some variational techniques in order to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter lambda and mu.
引用
收藏
页数:17
相关论文
共 50 条