Trapping Set Analysis of Finite-Length Quantum LDPC Codes

被引:0
|
作者
Raveendran, Nithin [1 ]
Vasic, Bane [1 ]
机构
[1] Univ Arizona, Ctr Quantum Networks, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
关键词
D O I
10.1109/ISIT45174.2021.9518154
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. In this paper, we develop a systematic methodology by which quantum trapping sets (QTSs) can be defined and categorized according to their topological structure. Conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that QTS information can be used to design better QLDPC code and decoder. For certain finite-length QLDPC codes, frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated without needing any post-processing steps.
引用
收藏
页码:1564 / 1569
页数:6
相关论文
共 50 条
  • [21] A PEG Construction of Finite-Length LDPC Codes with Low Error Floor
    Khazraie, Sina
    Asvadi, Reza
    Banihashemi, Amir H.
    IEEE COMMUNICATIONS LETTERS, 2012, 16 (08) : 1288 - 1291
  • [22] A Rate-Compatible Puncturing Scheme for Finite-Length LDPC Codes
    Asvadi, Reza
    Banihashemi, Amir H.
    IEEE COMMUNICATIONS LETTERS, 2013, 17 (01) : 147 - 150
  • [23] Systematic LDPC Convolutional Codes: Asymptotic and Finite-Length Anytime Properties
    Grosjean, Leefke
    Rasmussen, Lars Kildehoj
    Thobaben, Ragnar
    Skoglund, Mikael
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (12) : 4165 - 4183
  • [24] Finite-Length Rate-Compatible LDPC Codes: A Novel Puncturing Scheme
    Vellambi, Badri N.
    Fekri, Faramarz
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (02) : 297 - 301
  • [25] Tree-Structured Expectation Propagation for Decoding Finite-Length LDPC Codes
    Olmos, Pablo M.
    Jose Murillo-Fuentes, Juan
    Perez-Cruz, Fernando
    IEEE COMMUNICATIONS LETTERS, 2011, 15 (02) : 235 - 237
  • [26] Finite-Length Scaling Based on Belief Propagation for Spatially Coupled LDPC Codes
    Stinner, Markus
    Barletta, Luca
    Olmos, Pablo M.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2109 - 2113
  • [27] Analyzing Finite-length Protograph-based Spatially Coupled LDPC Codes
    Stinner, Markus
    Olmos, Pablo M.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 891 - 895
  • [28] Degenerate Quantum LDPC Codes With Good Finite Length Performance
    Panteleev, Pavel
    Kalachev, Gleb
    QUANTUM, 2021, 5
  • [29] Further Results on Finite-Length Analysis of BATS Codes
    Yang, Shenghao
    Yeung, Raymond W.
    2016 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2016,
  • [30] On the Waterfall Performance of Finite-Length SC-LDPC Codes Constructed From Protographs
    Stinner, Markus
    Olmos, Pablo M.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (02) : 345 - 361