Predicting Patients at Risk for Leaving Without Being Seen Using Machine Learning

被引:1
|
作者
Casey, P.
Zolfaghar, K.
Eckert, C.
Waters, L.
Sonntag, H.
McKelvey, T., Jr.
Mark, N. M.
机构
[1] Rush Univ, Med Ctr, Chicago, IL 60612 USA
[2] KenSci, Seattle, WA USA
关键词
D O I
10.1016/j.annemergmed.2018.08.017
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
12
引用
收藏
页码:S5 / S6
页数:2
相关论文
共 50 条
  • [41] Predicting maritime accident risk using Automated Machine Learning
    Munim, Ziaul Haque
    Sorli, Michael Andre
    Kim, Hyungju
    Alon, Ilan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 248
  • [42] Predicting the risk of inappropriate depth of endotracheal intubation in pediatric patients using machine learning approaches
    Shim, Jae-Geum
    Lee, Eun Kyung
    Oh, Eun Jung
    Cho, Eun-Ah
    Park, Jiyeon
    Lee, Jun-Ho
    Ahn, Jin Hee
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] Predicting Duodenal Cancer Risk in Patients with Familial Adenomatous Polyposis Using Machine Learning Model
    Akbulut, Sami
    Kucukakcali, Zeynep
    Colak, Cemil
    TURKISH JOURNAL OF GASTROENTEROLOGY, 2023, 34 (10): : 1025 - 1034
  • [44] Impact of Implementing a Direct Bedding Process on Emergency Department Throughput and Leaving Without Being Seen Rates
    Porter, J. A.
    Frye, K.
    Rodriguez, R.
    Arias, Velez M.
    VanDenburg, G.
    ANNALS OF EMERGENCY MEDICINE, 2018, 72 (04) : S11 - S12
  • [45] Predicting Patient Mortality: Using Machine Learning to Identify At-Risk Patients and Improve Outcomes
    Barton, C.
    Mohamadlou, H.
    Lynn-Palevsky, A.
    Fletcher, G.
    Shieh, L.
    Stark, P.
    Chettipally, U.
    Shimabukuro, D. W.
    Feldman, M.
    Das, R.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 197
  • [46] Predicting the risk of inappropriate depth of endotracheal intubation in pediatric patients using machine learning approaches
    Jae-Geum Shim
    Eun Kyung Lee
    Eun Jung Oh
    Eun-Ah Cho
    Jiyeon Park
    Jun-Ho Lee
    Jin Hee Ahn
    Scientific Reports, 13
  • [47] Machine Learning: Predicting Credit Risk
    Melo, Rafael Almeida Pereira
    Guimaraes, Paulo Henrique Sales
    Melo, Marcel Irving Pereira
    SIGMAE, 2024, 13 (04): : 219 - 230
  • [48] PATIENTS WHO LEAVE THE EMERGENCY DEPARTMENT WITHOUT BEING SEEN
    Johnson, Michele
    Myers, Stephanie
    Wineholt, June
    Pollack, Marc
    Kusmiesz, Amy L.
    JOURNAL OF EMERGENCY NURSING, 2009, 35 (02) : 105 - 108
  • [49] Factors associated with patients who leave without being seen
    Polevoi, SK
    Quinn, JV
    Kramer, NR
    ACADEMIC EMERGENCY MEDICINE, 2005, 12 (03) : 232 - 236
  • [50] CREATING A RAPID ASSESSMENT ZONE WITH LIMITED EMERGENCY DEPARTMENT CAPACITY DECREASES PATIENTS LEAVING WITHOUT BEING SEEN: A QUALITY IMPROVEMENT INITIATIVE
    Faber, Jayne
    Coomes, Justin
    Reinemann, Michael
    Carlson, Jestin N.
    JOURNAL OF EMERGENCY NURSING, 2023, 49 (01) : 86 - 98