Experimental Study of Memristors for use in Neuromorphic Computing

被引:0
|
作者
Zaman, Ayesha [1 ]
Shin, Eunsung [1 ]
Yakopcic, Chris [1 ]
Taha, Tarek M. [1 ]
Subramanyam, Guru [1 ]
机构
[1] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
关键词
memristor; neuromorphic; hysteresis; multi-level resistive switching; DEVICE; ARCHITECTURE; MECHANISM;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Memristor devices have the potential to drive a new class of specialized low power embedded hardware. The unique characteristics of these non-volatile and nanoscale devices allow them to perform parallel analog computing with extreme efficiency. To help facilitate the design of such systems, this paper describes the fabrication and characterization process used to develop memristors that are strong candidates for use in neuromorphic systems. In this work two different types of memristor devices, those with a GeTe switching layer, and those with a VO2 switching layer, are characterized and analyzed. These results are used to determine device suitability for use in neuromorphic computing applications through the properties of symmetry, reliability, stability, and programmability. In short, repeatable multi-level resistive switching has been investigated and the results have been summarized.
引用
收藏
页码:370 / 374
页数:5
相关论文
共 50 条
  • [21] Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing
    YuHao Wang
    TianCheng Gong
    YaXin Ding
    Yang Li
    Wei Wang
    ZiAng Chen
    Nan Du
    Erika Covi
    Matteo Farronato
    Dniele Ielmini
    XuMeng Zhang
    Qing Luo
    JournalofElectronicScienceandTechnology, 2022, 20 (04) : 356 - 374
  • [22] Organic iontronic memristors for artificial synapses and bionic neuromorphic computing
    Xia, Yang
    Zhang, Cheng
    Xu, Zheng
    Lu, Shuanglong
    Cheng, Xinli
    Wei, Shice
    Yuan, Junwei
    Sun, Yanqiu
    Li, Yang
    NANOSCALE, 2024, 16 (04) : 1471 - 1489
  • [23] Redox Memristors with Volatile Threshold Switching Behavior for Neuromorphic Computing
    Yu-Hao Wang
    Tian-Cheng Gong
    Ya-Xin Ding
    Yang Li
    Wei Wang
    Zi-Ang Chen
    Nan Du
    Erika Covi
    Matteo Farronato
    Dniele Ielmini
    Xu-Meng Zhang
    Qing Luo
    Journal of Electronic Science and Technology, 2022, (04) : 356 - 374
  • [24] Towards engineering in memristors for emerging memory and neuromorphic computing: A review
    Andrey S.Sokolov
    Haider Abbas
    Yawar Abbas
    Changhwan Choi
    Journal of Semiconductors, 2021, 42 (01) : 37 - 65
  • [25] On the area scalability of valence-change memristors for neuromorphic computing
    Ang, D. S.
    Zhou, Y.
    Yew, K. S.
    Berco, D.
    APPLIED PHYSICS LETTERS, 2019, 115 (17)
  • [26] A Dynamical Compact Model of Diffusive and Drift Memristors for Neuromorphic Computing
    Zhuo, Ye
    Midya, Rivu
    Song, Wenhao
    Wang, Zhongrui
    Asapu, Shiva
    Rao, Mingyi
    Lin, Peng
    Jiang, Hao
    Xia, Qiangfei
    Williams, R. Stanley
    Yang, J. Joshua
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (08):
  • [27] Towards engineering in memristors for emerging memory and neuromorphic computing: A review
    Andrey SSokolov
    Haider Abbas
    Yawar Abbas
    Changhwan Choi
    Journal of Semiconductors, 2021, (01) : 37 - 65
  • [28] Opto-electronic memristors: Prospects and challenges in neuromorphic computing
    Emboras, Alexandros
    Alabastri, Alessandro
    Lehmann, Paul
    Portner, Kevin
    Weilenmann, Christoph
    Ma, Ping
    Cheng, Bojun
    Lewerenz, Mila
    Passerini, Elias
    Koch, Ueli
    Aeschlimann, Jan
    Ducry, Fabian
    Leuthold, Juerg
    Luisier, Mathieu
    APPLIED PHYSICS LETTERS, 2020, 117 (23)
  • [29] Silk Protein Based Volatile Threshold Switching Memristors for Neuromorphic Computing
    Zhao, Momo
    Wang, Saisai
    Li, Dingwei
    Wang, Rui
    Li, Fanfan
    Wu, Mengqi
    Liang, Kun
    Ren, Huihui
    Zheng, Xiaorui
    Guo, Chengchen
    Ma, Xiaohua
    Zhu, Bowen
    Wang, Hong
    Hao, Yue
    ADVANCED ELECTRONIC MATERIALS, 2022, 8 (04)
  • [30] Neuromorphic Computing of Optoelectronic Artificial BFCO/AZO Heterostructure Memristors Synapses
    Fan, Zhao-Yuan
    Tang, Zhenhua
    Fang, Jun-Lin
    Jiang, Yan-Ping
    Liu, Qiu-Xiang
    Tang, Xin-Gui
    Zhou, Yi-Chun
    Gao, Ju
    NANOMATERIALS, 2024, 14 (07)