In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results

被引:53
|
作者
Goicoa, T. [1 ,2 ,4 ]
Adin, A. [1 ,2 ]
Ugarte, M. D. [1 ,2 ]
Hodges, J. S. [3 ]
机构
[1] Univ Publ Navarra, Dept Stat & OR, Pamplona, Spain
[2] Univ Publ Navarra, Inst Adv Mat InaMat, Pamplona, Spain
[3] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[4] Res Network Hlth Serv Chron Dis REDISSEC, Madrid, Spain
关键词
Breast cancer; INLA; Leroux CAR prior; PQL; Space-time interactions; SPACE-TIME VARIATION; APPROXIMATE INFERENCE; EMPIRICAL BAYES; RISK; LIKELIHOOD;
D O I
10.1007/s00477-017-1405-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Disease mapping studies the distribution of relative risks or rates in space and time, and typically relies on generalized linear mixed models (GLMMs) including fixed effects and spatial, temporal, and spatio-temporal random effects. These GLMMs are typically not identifiable and constraints are required to achieve sensible results. However, automatic specification of constraints can sometimes lead to misleading results. In particular, the penalized quasi-likelihood fitting technique automatically centers the random effects even when this is not necessary. In the Bayesian approach, the recently-introduced integrated nested Laplace approximations computing technique can also produce wrong results if constraints are not well-specified. In this paper the spatial, temporal, and spatio-temporal interaction random effects are reparameterized using the spectral decompositions of their precision matrices to establish the appropriate identifiability constraints. Breast cancer mortality data from Spain is used to illustrate the ideas.
引用
收藏
页码:749 / 770
页数:22
相关论文
共 50 条
  • [1] In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results
    T. Goicoa
    A. Adin
    M. D. Ugarte
    J. S. Hodges
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 749 - 770
  • [2] Spatio-temporal disease mapping using INLA
    Schroedle, Birgit
    Held, Leonhard
    ENVIRONMETRICS, 2011, 22 (06) : 725 - 734
  • [3] Spatio-temporal occupancy models with INLA
    Belmont, Jafet
    Martino, Sara
    Illian, Janine
    Rue, Havard
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (11): : 2087 - 2100
  • [4] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 4 : 33 - 49
  • [5] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 7 : 39 - 55
  • [6] Variance partitioning in spatio-temporal disease mapping models
    Franco-Villoria, Maria
    Ventrucci, Massimo
    Rue, Havard
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (08) : 1566 - 1578
  • [7] Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA
    Sani, Asrul
    Abapihi, Bahriddin
    Mukhsar
    Tosepu, Ramadhan
    Usman, Ida
    Rahman, Gusti Arviani
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06): : 939 - 951
  • [8] Zero-inflated spatio-temporal models for disease mapping
    Torabi, Mahmoud
    BIOMETRICAL JOURNAL, 2017, 59 (03) : 430 - 444
  • [9] Evaluating the performance of spatio-temporal Bayesian models in disease mapping
    Ugarte, M. D.
    Goicoa, T.
    Ibanez, B.
    Militino, A. R.
    ENVIRONMETRICS, 2009, 20 (06) : 647 - 665
  • [10] Practical parameter identifiability for spatio-temporal models of cell invasion
    Simpson, Matthew J.
    Baker, Ruth E.
    Vittadello, Sean T.
    Maclaren, Oliver J.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (164)