Integrating Earth-life systems: a geogenomic approach

被引:23
|
作者
Dolby, Greer A. [1 ,2 ,3 ]
Bennett, Scott E. K. [3 ,4 ]
Dorsey, Rebecca J. [3 ,5 ]
Stokes, Maya F. [3 ,6 ]
Riddle, Brett R. [3 ,7 ]
Lira-Noriega, Andres [3 ,8 ]
Munguia-Vega, Adrian [3 ,9 ]
Wilder, Benjamin T. [3 ,9 ]
机构
[1] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Biodesign Ctr, Ctr Mech Evolut, Tempe, AZ 85287 USA
[3] Baja GeoGenom Consortium, Www Bajageogenom Org, Portland, OR USA
[4] US Geol Survey, Geol Minerals Energy & Geophys Sci Ctr, Portland, OR 97201 USA
[5] Univ Oregon, Dept Earth Sci, Eugene, OR 97403 USA
[6] Yale Univ, Yale Inst Biospher Studies, New Haven, CT 06511 USA
[7] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
[8] Inst Ecol AC, Red Estudios Mol Avanzados, CONACyT Res Fellow, Xalapa 91073, Veracruz, Mexico
[9] Univ Arizona, Desert Lab, Tumamoc Hill, Tucson, AZ 85745 USA
基金
美国国家科学基金会;
关键词
GLOBAL PATTERNS; ANDEAN UPLIFT; CLIMATE; HISTORY; VICARIANCE; SPECIATION; EVOLUTION; RANGE; RECONSTRUCTION; BIODIVERSITY;
D O I
10.1016/j.tree.2021.12.004
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
For centuries, scientists have recognized and worked to understand how Earth's mutable landscape and climate shape the distribution and evolution of species. Here, we describe the emerging field of geogenomics, which uses the reciprocal and deep integration of geologic, climatic, and population genomic data to define and test cause-effect relationships between Earth and life at intermediate spatial and temporal scales (i.e., the mesoscale). Technological advances now power the detailed reconstruction of landscape and evolutionary histories, but transdisciplinary collaborations and new quantitative tools are needed to better integrate Earth-life data. Geogenomics can help build a more unified theory and characterize the boundary conditions under which geologic and climatic processes generate new biodiversity, how species' responses differ, and why.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] An approach for integrating legacy systems in the manufacturing industry
    Govindarajan, Naveen
    Ferrer, Borja Ramis
    Xu, Xiangbin
    Nieto, Angelica
    Lastra, Jose L. Martinez
    2016 IEEE 14TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2016, : 683 - 688
  • [22] An Approach to Integrating Sentiment Analysis into Recommender Systems
    Dang, Cach N.
    Moreno-Garcia, Maria N.
    Prieta, Fernando De la
    SENSORS, 2021, 21 (16)
  • [23] ORIGINS OF LIFE Systems chemistry on early Earth
    Szostak, Jack W.
    NATURE, 2009, 459 (7244) : 171 - 172
  • [24] Hybrid Life: Integrating biological, artificial, and cognitive systems
    Baltieri, Manuel
    Iizuka, Hiroyuki
    Witkowski, Olaf
    Sinapayen, Lana
    Suzuki, Keisuke
    WILEY INTERDISCIPLINARY REVIEWS-COGNITIVE SCIENCE, 2023,
  • [25] The Environmental and Genetic Approach for Life on Earth (EAGLE) project
    Kanda, Hiroshi
    POLAR SCIENCE, 2009, 3 (03) : 189 - 196
  • [26] A FUNCTIONAL-APPROACH TO INTEGRATING DATABASE AND EXPERT SYSTEMS
    RISCH, T
    REBOH, R
    HART, P
    DUDA, R
    COMMUNICATIONS OF THE ACM, 1988, 31 (12) : 1424 - 1437
  • [27] Supporting Digital Twins Systems Integrating the MERODE Approach
    Compagnucci, Ivan
    Snoeck, Monique
    Asensio, Estefania Serral
    2023 ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS COMPANION, MODELS-C, 2023, : 449 - 458
  • [28] Integrating medical histology and physiology in an organ systems approach
    Heidger, Paul M., Jr.
    Schmidt, Gregory A.
    Schmidt, Thomas J.
    FASEB JOURNAL, 2009, 23
  • [29] LIFE SUPPORT AND WAR CONTROL SYSTEMS FOR PLANET EARTH
    KURTZ, H
    COMPUTERS AND AUTOMATION, 1971, 20 (05): : 37 - &
  • [30] AN APPROACH FOR INTEGRATING EARTH OBSERVATION, CHANGE DETECTION AND CONTEXTUAL DATA FOR SEMANTIC SEARCH
    Tran, Ba-Huy
    Aussenac-Gilles, Nathalie
    Comparot, Catherine
    Trojahn, Cassia
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3115 - 3118