Integrating Earth-life systems: a geogenomic approach

被引:23
|
作者
Dolby, Greer A. [1 ,2 ,3 ]
Bennett, Scott E. K. [3 ,4 ]
Dorsey, Rebecca J. [3 ,5 ]
Stokes, Maya F. [3 ,6 ]
Riddle, Brett R. [3 ,7 ]
Lira-Noriega, Andres [3 ,8 ]
Munguia-Vega, Adrian [3 ,9 ]
Wilder, Benjamin T. [3 ,9 ]
机构
[1] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Biodesign Ctr, Ctr Mech Evolut, Tempe, AZ 85287 USA
[3] Baja GeoGenom Consortium, Www Bajageogenom Org, Portland, OR USA
[4] US Geol Survey, Geol Minerals Energy & Geophys Sci Ctr, Portland, OR 97201 USA
[5] Univ Oregon, Dept Earth Sci, Eugene, OR 97403 USA
[6] Yale Univ, Yale Inst Biospher Studies, New Haven, CT 06511 USA
[7] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA
[8] Inst Ecol AC, Red Estudios Mol Avanzados, CONACyT Res Fellow, Xalapa 91073, Veracruz, Mexico
[9] Univ Arizona, Desert Lab, Tumamoc Hill, Tucson, AZ 85745 USA
基金
美国国家科学基金会;
关键词
GLOBAL PATTERNS; ANDEAN UPLIFT; CLIMATE; HISTORY; VICARIANCE; SPECIATION; EVOLUTION; RANGE; RECONSTRUCTION; BIODIVERSITY;
D O I
10.1016/j.tree.2021.12.004
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
For centuries, scientists have recognized and worked to understand how Earth's mutable landscape and climate shape the distribution and evolution of species. Here, we describe the emerging field of geogenomics, which uses the reciprocal and deep integration of geologic, climatic, and population genomic data to define and test cause-effect relationships between Earth and life at intermediate spatial and temporal scales (i.e., the mesoscale). Technological advances now power the detailed reconstruction of landscape and evolutionary histories, but transdisciplinary collaborations and new quantitative tools are needed to better integrate Earth-life data. Geogenomics can help build a more unified theory and characterize the boundary conditions under which geologic and climatic processes generate new biodiversity, how species' responses differ, and why.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [1] An earth-life thing
    Carraway, JE
    CLOTHED WITH CHARITY, 1997, : 109 - 112
  • [2] Neoproterozoic Earth-life system
    Tang, Qing
    Cui, Huan
    Zhang, Feifei
    PRECAMBRIAN RESEARCH, 2022, 368
  • [3] An Introduction to the Earth-Life System
    McCollin, Duncan
    GEOGRAPHICAL JOURNAL, 2009, 175 : 242 - 242
  • [4] Towards a unified framework to study causality in Earth-life systems
    Dolby, Greer A.
    MOLECULAR ECOLOGY, 2021, 30 (22) : 5628 - 5642
  • [5] Plant Silicon and Phytolith Research and the Earth-Life Superdiscipline
    Katz, Ofir
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [6] Macrostratigraphy: Insights into Cyclic and Secular Evolution of the Earth-Life System
    Peters, Shanan E.
    Quinn, Daven P.
    Husson, Jon M.
    Gaines, Robert R.
    ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2022, 50 : 419 - 449
  • [7] The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution
    Garcia, Amanda K.
    Cavanaugh, Colleen M.
    Kacar, Betul
    ISME JOURNAL, 2021, 15 (08): : 2183 - 2194
  • [8] The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution
    Amanda K. Garcia
    Colleen M. Cavanaugh
    Betul Kacar
    The ISME Journal, 2021, 15 : 2183 - 2194
  • [9] Recent advances in understanding the terminal Ediacaran Earth-life system in South China and Arctic Siberia
    Cui, H.
    Kaufman, A. J.
    Xiao, S.
    Grazhdankin, D. V.
    Peek, S.
    Martin, A. J.
    Bykova, N. V.
    Rogov, V. I.
    Liu, X. M.
    Zhang, F.
    Romaniello, S. J.
    Anbar, A. D.
    Peng, Y.
    Cai, Y.
    Schiffbauer, J. D.
    Meyer, M.
    Gilleaudeau, G. J.
    Plummer, R. E.
    Sievers, N. E.
    Goderis, S.
    Claeys, P.
    ESTUDIOS GEOLOGICOS-MADRID, 2019, 75 (02):
  • [10] Per-capita change rates of the Phanerozoic Earth-life system exhibited Zipf distributions
    Shang, Haitao
    PALAEOWORLD, 2024, 33 (05) : 1170 - 1178