Unsupervised network traffic anomaly detection with deep autoencoders

被引:6
|
作者
Dutta, Vibekananda [1 ,2 ]
Pawlicki, Marek [1 ]
Kozik, Rafal [1 ]
Choras, Michal [1 ]
机构
[1] Bydgoszcz Univ Sci & Technol, Inst Telecommun & Comp Sci, Al Prof Sylwestra Kaliskiego 7, PL-85976 Bydgoszcz, Poland
[2] Warsaw Univ Technol, Inst Micromech & Photon, Sw Andrzeja Boboli 8-507, PL-02525 Warsaw, Poland
关键词
Machine learning; deep learning; cybersecurity; intrusion detection system; autoencoder; deep neural network; INTRUSION DETECTION SYSTEM; MACHINE; ENSEMBLE; ATTACKS;
D O I
10.1093/jigpal/jzac002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Contemporary Artificial Intelligence methods, especially their subset-deep learning, are finding their way to successful implementations in the detection and classification of intrusions at the network level. This paper presents an intrusion detection mechanism that leverages Deep AutoEncoder and several Deep Decoders for unsupervised classification. This work incorporates multiple network topology setups for comparative studies. The efficiency of the proposed topologies is validated on two established benchmark datasets: UNSW-NB15 and NetML-2020. The results of their analysis are discussed in terms of classification accuracy, detection rate, false-positive rate, negative predictive value, Matthews correlation coefficient and F1-score. Furthermore, comparing against the state-of-the-art methods used for network intrusion detection is also disclosed.
引用
收藏
页码:912 / 925
页数:14
相关论文
共 50 条
  • [41] Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
    Principi, Emanuele
    Rossetti, Damiano
    Squartini, Stefano
    Piazza, Francesco
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (02) : 441 - 451
  • [42] Malignant Microcalcification Clusters Detection using Unsupervised Deep Autoencoders
    Hou, Rui
    Ren, Yinhao
    Grimm, Lars J.
    Mazurowski, Maciej A.
    Marks, Jeffrey R.
    King, Lorraine
    Maley, Carlo C.
    Hwang, E. Shelley
    Lo, Joseph Y.
    MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSIS, 2019, 10950
  • [43] Network Traffic Anomaly Detection Based on Information Gain and Deep Learning
    Lu, Xianglin
    Liu, Pengju
    Lin, Jiayi
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND DATA MINING (ICISDM 2019), 2019, : 11 - 15
  • [44] Unsupervised Electric Motor Fault Detection by Using Deep Autoencoders
    Emanuele Principi
    Damiano Rossetti
    Stefano Squartini
    Francesco Piazza
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (02) : 441 - 451
  • [45] Unsupervised Deep Anomaly Detection in Chest Radiographs
    Takahiro Nakao
    Shouhei Hanaoka
    Yukihiro Nomura
    Masaki Murata
    Tomomi Takenaga
    Soichiro Miki
    Takeyuki Watadani
    Takeharu Yoshikawa
    Naoto Hayashi
    Osamu Abe
    Journal of Digital Imaging, 2021, 34 : 418 - 427
  • [46] Unsupervised Phase Discovery with Deep Anomaly Detection
    Kottmann, Korbinian
    Huembeli, Patrick
    Lewenstein, Maciej
    Acin, Antonio
    PHYSICAL REVIEW LETTERS, 2020, 125 (17)
  • [47] SALAD: A split active learning based unsupervised network data stream anomaly detection method using autoencoders
    Nixon, Christopher
    Sedky, Mohamed
    Champion, Justin
    Hassan, Mohamed
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248
  • [48] DoTA: Unsupervised Detection of Traffic Anomaly in Driving Videos
    Yao, Yu
    Wang, Xizi
    Xu, Mingze
    Pu, Zelin
    Wang, Yuchen
    Atkins, Ella
    Crandall, David J. J.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (01) : 444 - 459
  • [49] AGAE: Unsupervised Anomaly Detection for Encrypted Malicious Traffic
    Wang, Hao
    Wang, Ye
    Gu, Zhaoquan
    Jia, Yan
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 448 - 464
  • [50] Unsupervised Deep Anomaly Detection in Chest Radiographs
    Nakao, Takahiro
    Hanaoka, Shouhei
    Nomura, Yukihiro
    Murata, Masaki
    Takenaga, Tomomi
    Miki, Soichiro
    Watadani, Takeyuki
    Yoshikawa, Takeharu
    Hayashi, Naoto
    Abe, Osamu
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (02) : 418 - 427