Computer simulations -: Introduction to the Bethe ansatz II

被引:53
|
作者
Karbach, M [1 ]
Hu, K
Müller, G
Tobochnik, J
机构
[1] Berg Univ Wuppertal, Fachbereich Phys, D-42097 Wuppertal, Germany
[2] Univ Rhode Isl, Dept Phys, Kingston, RI 02881 USA
来源
COMPUTERS IN PHYSICS | 1998年 / 12卷 / 06期
关键词
D O I
10.1063/1.168740
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:565 / 573
页数:9
相关论文
共 50 条
  • [21] Discrete thermodynamic Bethe ansatz
    Bergére, M
    Imura, KI
    Ouvry, S
    Electronic Correlations: From Meso- to Nano-Physics, 2001, : 319 - 322
  • [22] Chaos in the thermodynamic Bethe ansatz
    Castro-Alvaredo, O
    Fring, A
    PHYSICS LETTERS A, 2005, 334 (2-3) : 173 - 179
  • [23] Boundary perimeter Bethe ansatz
    Frassek, Rouven
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (26)
  • [24] Bethe ansatz and isomondromy deformations
    Talalaev, D. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (02) : 627 - 639
  • [25] The Bethe Ansatz as a Quantum Circuit
    Ruiz, Roberto
    Sopena, Alejandro
    Gordon, Max Hunter
    Sierra, German
    Lopez, Esperanza
    QUANTUM, 2024, 8
  • [26] SUPERSYMMETRIC VACUA AND BETHE ANSATZ
    Nekrasov, Nikita A.
    Shatashvili, Samson L.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 192-93 : 91 - 112
  • [27] Hirota equation and Bethe ansatz
    Zabrodin, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1998, 116 (01) : 782 - 819
  • [28] A brief introduction to the Bethe ansatz in N=4 super-Yang-Mills
    Minahan, Joseph A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (41): : 12657 - 12677
  • [29] Introduction to computer simulations
    Tamura, H.
    Miyamoto, A.
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2001, 46 (04):
  • [30] Scalar products of Bethe vectors in the generalized algebraic Bethe ansatz
    Kulkarni G.
    Slavnov N.A.
    Theoretical and Mathematical Physics, 2023, 217 (1) : 1574 - 1594