Mapping of QTL for kernel abortion caused by in vivo haploid induction in maize (Zea mays L.)

被引:9
|
作者
Qu, Yanzhi [1 ]
Wu, Penghao [2 ,3 ]
Ren, Jiaojiao [2 ,3 ]
Liu, Zonghua [1 ]
Tang, Jihua [1 ]
Lubberstedt, Thomas [4 ]
Li, Haochuan [1 ,2 ]
Chen, Shaojiang [2 ]
机构
[1] Henan Agr Univ, Coll Agron, Collaborat Innovat Ctr Henan Grain Crops, Natl Key Lab Wheat & Maize Crop Sci, Zhengzhou, Peoples R China
[2] China Agr Univ, Natl Maize Improvement Ctr, Beijing, Peoples R China
[3] Xinjiang Agr Univ, Coll Agron, Urumqi, Peoples R China
[4] Iowa State Univ, Dept Agron, Ames, IA USA
来源
PLOS ONE | 2020年 / 15卷 / 02期
基金
中国国家自然科学基金;
关键词
CHROMOSOME ELIMINATION; MATERNAL HAPLOIDS; SEED DEVELOPMENT; GENE; ENCODES; PHOSPHOLIPASE; ENDOSPERM; PROTEIN; CELL; GYNOGENESIS;
D O I
10.1371/journal.pone.0228411
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Kernel abortion is common phenomenon in vivo haploid induction and closely linked with haploid induction rate, but little information of kernel abortion is available and its genetic basis still unclear. We used two mapping populations including 186 and 263 F-2.3 family lines to analyze the different degree of kernel abortion and identify quantitative trait loci (QTL) responsible for kernel abortion during haploid induction. In total 62 putative QTL, accounting for 3.27-14.70% of the phenotypic variation in kernel abortion traits, were detected across all 10 chromosomes. Ten QTL with over 10% contribution to phenotypic variation were affecting the fifth level of endosperm abortion (EnA5th), endosperm abortion (EnA) and total abortion (TA). Co-localization among kernel abortion traits QTL was observed in both populations and among different kernel abortion types. Five overlaps were indentified in the QTL for kernel abortion traits and HIR traits. Maize chromosome bins 3.01-3.02, 3.04-3.06, 4.05-4.06, 5.03-5.04, 8.06 were QTL hotspots for three or four traits related to the kernel abortion during haploid induction. Total kernel abortion rate (TAR) and HIR showed highly significant positive correlation. These findings may help to reveal haploid induction mechanisms and improve haploid production efficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genetic mapping of QTL for the sizes of eight consecutive leaves below the tassel in maize (Zea mays L.)
    Cong Yang
    Dengguo Tang
    Jingtao Qu
    Ling Zhang
    Lei Zhang
    Zhengjie Chen
    Jian Liu
    Theoretical and Applied Genetics, 2016, 129 : 2191 - 2209
  • [42] QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites
    Chen, Junyi
    Xu, Li
    Cai, Yilin
    Xu, Jun
    PLANT AND SOIL, 2008, 313 (1-2) : 251 - 266
  • [43] QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.)
    Dezhou Cui
    Dandan Wu
    Yamuna Somarathna
    Chunyan Xu
    Song Li
    Peng Li
    Hua Zhang
    Huabang Chen
    Li Zhao
    Euphytica, 2015, 203 : 273 - 283
  • [44] QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize (Zea mays L.)
    Brown, Amber N.
    Lauter, Nick
    Vera, Daniel L.
    McLaughlin-Large, Karen A.
    Steele, Tace M.
    Fredette, Natalie C.
    Bass, Hank W.
    G3-GENES GENOMES GENETICS, 2011, 1 (06): : 437 - 450
  • [45] Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
    Zhu, JM
    Kaeppler, SM
    Lynch, JP
    PLANT AND SOIL, 2005, 270 (1-2) : 299 - 310
  • [46] Tissue culture characteristics of maize (Zea mays L.) haploid coleoptile sections
    Jiang, L.
    Jing, G. X.
    Li, X. Y.
    Wang, X. Q.
    Xing, Z.
    Deng, P. K.
    Zhao, R. G.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (04): : 16265 - 16275
  • [47] DIPLODIA EAR ROT RESISTANCE QTL IDENTIFIED IN MAIZE (Zea mays L.) USING MULTI-PARENT DOUBLE-HAPLOID POPULATION MAPPING
    Baer, O. T.
    Laude, T. P.
    Reano, C. E.
    Gregorio, G. B.
    Diaz, M. G. Q.
    Pabro, L. J. A.
    Tamba, L.
    Baltazar, N.
    Fabreag, M. E. R.
    Pocsedio, A. E.
    Kumar, A. G.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2021, 53 (01): : 112 - 125
  • [48] INHERITANCE OF INORGANIC AND PHYTIC PHOSPHORUS IN MAIZE (Zea mays L.) KERNEL
    Camdzija, Zoran
    Dragicevic, Vesna
    Vancetovic, Jelena
    Stevanovic, Milan
    Pavlov, Jovan
    Filipovic, Milomir
    Ignjatovic-Micic, Dragana
    GENETIKA-BELGRADE, 2018, 50 (01): : 299 - 314
  • [49] The Genetic Architecture of Maize (Zea mays L.) Kernel Weight Determination
    Alvarez Prado, Santiago
    Lopez, Cesar G.
    Lynn Senior, M.
    Borras, Lucas
    G3-GENES GENOMES GENETICS, 2014, 4 (09): : 1611 - 1621
  • [50] Mapping and Functional Analysis of QTL for Kernel Number per Row in Tropical and Temperate-Tropical Introgression Lines of Maize (Zea mays L.)
    Wang, Yuling
    Bi, Yaqi
    Jiang, Fuyan
    Shaw, Ranjan Kumar
    Sun, Jiachen
    Hu, Can
    Guo, Ruijia
    Fan, Xingming
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (05) : 4416 - 4430