Additive Manufacturing and Performance of Architectured Cement-Based Materials

被引:133
|
作者
Moini, Mohamadreza [1 ]
Olek, Jan [1 ]
Youngblood, Jeffrey P. [2 ]
Magee, Bryan [3 ]
Zavattieri, Pablo D. [1 ]
机构
[1] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[3] Ulster Univ Newtownabbey, Built Environm Res Inst, Newtownabbey BT37 0QB, North Ireland
基金
美国国家科学基金会;
关键词
architectured materials; direct ink writing; hardened cement paste; interfaces; mechanical response; DISSIMILAR ELASTIC-MATERIALS; 3 BALLS TEST; MECHANICAL-PROPERTIES; INTERLAYER ADHESION; HARDENED PROPERTIES; CRACK DEFLECTION; PORTLAND-CEMENT; BRITTLE DISCS; STRENGTH; COMPOSITES;
D O I
10.1002/adma.201802123
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an increasing interest in hierarchical design and additive manufacturing (AM) of cement-based materials. However, the brittle behavior of these materials and the presence of interfaces from the AM process currently present a major challenge. Contrary to the commonly adopted approach in AM of cement-based materials to eliminate the interfaces in 3D-printed hardened cement paste (hcp) elements, this work focuses on harnessing the heterogeneous interfaces by employing novel architectures (based on bioinspired Bouligand structures). These architectures are found to generate unique damage mechanisms, which allow inherently brittle hcp materials to attain flaw-tolerant properties and novel performance characteristics. It is hypothesized that combining heterogeneous interfaces with carefully designed architectures promotes such damage mechanisms as, among others, interfacial microcracking and crack twisting. This, in turn, leads to damage delocalization in brittle 3D-printed architectured hcp and therefore results in quasi-brittle behavior, enhanced fracture and damage tolerance, and unique load-displacement response, all without sacrificing strength. It is further found that in addition to delocalization of the cracks, the Bouligand architectures can also enhance work of failure and inelastic deflection of the architectured hcp elements by over 50% when compared to traditionally cast elements from the same materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effects of cement particle size distribution on performance properties of Portland cement-based materials
    Bentz, DP
    Garboczi, EJ
    Haecker, CJ
    Jensen, OM
    CEMENT AND CONCRETE RESEARCH, 1999, 29 (10) : 1663 - 1671
  • [32] The pH of Cement-based Materials: A Review
    Yousuf Sumra
    Shafigh Payam
    Ibrahim Zainah
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 908 - 924
  • [33] Cement-based materials with graphene nanophase
    Dalla, P. T.
    Tragazikis, I. K.
    Exarchos, D. A.
    Dassios, K.
    Matikas, T. E.
    SMART MATERIALS AND NONDESTRUCTIVE EVALUATION FOR ENERGY SYSTEMS 2017, 2017, 10171
  • [34] THz Fingerprints of Cement-Based Materials
    Dolado, Jorge S.
    Goracci, Guido
    Duque, Eduardo
    Martauz, Pavel
    Zuo, Yibing
    Ye, Guang
    MATERIALS, 2020, 13 (18)
  • [35] The pH of Cement-based Materials: A Review
    Yousuf, Sumra
    Shafigh, Payam
    Ibrahim, Zainah
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (05): : 908 - 924
  • [36] Rheology of extruded cement-based materials
    Kuder, Katherine G.
    Shah, Surendra P.
    ACI MATERIALS JOURNAL, 2007, 104 (03) : 283 - 290
  • [37] The pH of Cement-based Materials:A Review
    Sumra Yousuf
    Payam Shafigh
    Zainah Ibrahim
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (05) : 908 - 924
  • [38] A review of cement-based materials as electroceramics
    Chung, D. D. L.
    Xi, Xiang
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 24621 - 24642
  • [39] Physical and chemical effects of El Hadjar slag used as an additive in cement-based materials
    Behim, Mourad
    Cyr, Martin
    Clastres, Pierre
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2011, 15 (10) : 1413 - 1432
  • [40] Modification of cement-based materials with nanoparticles
    Kawashima, Shiho
    Hou, Pengkun
    Corr, David J.
    Shah, Surendra P.
    CEMENT & CONCRETE COMPOSITES, 2013, 36 : 8 - 15