Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries

被引:30
|
作者
Ahn, Seongmo [1 ,2 ]
Jang, Jin Hyeok [3 ,4 ]
Kang, Jungtaek [1 ,2 ]
Na, Moony [1 ,2 ]
Seo, Jia [3 ,4 ]
Singh, Vikram [1 ,2 ,5 ]
Joo, Jung Min [3 ,4 ]
Byon, Hye Ryung [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem, Daejeon 34141, South Korea
[2] KAIST Inst NanoCentury, Adv Battery Ctr, Daejeon 34141, South Korea
[3] Pusan Natl Univ, Dept Chem, Busan 46241, South Korea
[4] Pusan Natl Univ, Chem Inst Funct Mat, Busan 46241, South Korea
[5] Korea Adv Inst Sci & Technol, Natl Sci Res Inst, Daejeon 34141, South Korea
来源
ACS ENERGY LETTERS | 2021年 / 6卷 / 09期
关键词
ENERGY-STORAGE; IONIC LIQUIDS; ELECTROLYTE SOLVATION; ANOLYTE MATERIALS; CROSSOVER;
D O I
10.1021/acsenergylett.1c01623
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many organic redox materials are chemically unstable and sparingly soluble in nonaqueous media. Additionally, the crossover of redox materials and the availability of limited membranes have restricted the examination of the long-term cyclability of these materials in nonaqueous redox flow batteries (RFBs). To overcome these limitations, we developed a new class of pyridinium-based negolytes. The p-conjugation structure of the pyridinium molecules was extended by introducing benzothiazole into the C4-position of pyridinium, which improved the stability of these molecules. Cationic ammonium functional groups at the N-substituent suppressed the crossover of the pyridinium negolytes through an anion exchange membrane. Furthermore, the solubility of the negolyte was increased up to similar to 1 M in acetonitrile and 0.3-0.5 M with tetrabutylammonium bis(trifluoromethanesulfonyl)imide (TBATFSI) and acetonitrile. A 0.1 M solution of the dicationic benzothiazolylpyridinium exhibited 0.0083% capacity-fading rate per cycle in symmetric RFBs for 250 cycles and 0.08% in full RFBs comprising the ammonium-substituted ferrocene as a posolyte for 500 cycles.
引用
收藏
页码:3390 / 3397
页数:8
相关论文
共 50 条
  • [31] Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries
    Wang, Gongwei
    Huang, Bing
    Liu, Dan
    Zheng, Dong
    Harris, Joshua
    Xue, Janie
    Qu, Deyang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) : 13286 - 13293
  • [32] Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries
    Chu, Terry
    Popov, Ivan A.
    Andrade, Gabriel A.
    Maurya, Sandip
    Yang, Ping
    Batista, Enrique R.
    Scott, Brian L.
    Mukundan, Rangachary
    Davis, Benjamin L.
    CHEMSUSCHEM, 2019, 12 (07) : 1304 - 1309
  • [33] Two-Electron Tetrathiafulvalene Catholytes for Nonaqueous Redox Flow Batteries
    Daub, Nicolas
    Hendriks, Koen H.
    Janssen, Rene A. J.
    BATTERIES & SUPERCAPS, 2022, 5 (12)
  • [34] TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries
    Zhao, Yuyue
    Zhang, Jingjing
    Agarwal, Garvit
    Yu, Zhou
    Corman, Rebecca E.
    Wang, Yilin
    Robertson, Lily A.
    Shi, Zhangxing
    Doan, Hieu A.
    Ewoldt, Randy H.
    Shkrob, Ilya A.
    Assary, Rajeev S.
    Cheng, Lei
    Srinivasan, Venkat
    Babinece, Susan J.
    Zhang, Lu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) : 16769 - 16775
  • [35] Ambient Temperature Sodium Polysulfide Catholyte for Nonaqueous Redox Flow Batteries
    Self, Ethan C.
    Tyler, Jameson L.
    Nanda, Jagjit
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
  • [36] All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries
    Friedl, Jochen
    Lebedeva, Maria A.
    Porfyrakis, Kyriakos
    Stimming, Ulrich
    Chamberlain, Thomas W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (01) : 401 - 405
  • [37] Dual function organic active materials for nonaqueous redox flow batteries
    Attanayake, N. Harsha
    Liang, Zhiming
    Wang, Yilin
    Kaur, Aman Preet
    Parkin, Sean R.
    Mobley, Justin K.
    Ewoldt, Randy H.
    Landon, James
    Odom, Susan A.
    MATERIALS ADVANCES, 2021, 2 (04): : 1390 - 1401
  • [38] Numerical investigations of flow field designs for vanadium redox flow batteries
    Xu, Q.
    Zhao, T. S.
    Leung, P. K.
    APPLIED ENERGY, 2013, 105 : 47 - 56
  • [39] Large-scale preparation of redox active organics for symmetric nonaqueous redox flow batteries
    Saraidaridis, James
    Straker, Robert
    Sevov, Christo
    Suttil, James
    Sanford, Melanie
    Willis, Michael
    Monroe, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [40] Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries
    Cabrera, Pablo J.
    Yang, Xingyi
    Sutti, James A.
    Hawthorne, Krista L.
    Brooner, Rachel E. M.
    Sanford, Melanie S.
    Thompson, Levi T.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28): : 15882 - 15889