Patterned Peeling 2D MoS2 off the Substrate

被引:32
|
作者
Zhao, Jing [1 ,2 ,3 ]
Yu, Hua [1 ,2 ]
Chen, Wei [1 ,2 ,4 ]
Yang, Rong [1 ,2 ]
Zhu, Jianqi [1 ,2 ]
Liao, Mengzhou [1 ,2 ]
Shi, Dongxia [1 ,2 ]
Zhang, Guangyu [1 ,2 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[4] Gannan Normal Univ, Coll Phys & Elect Informat, Ganzhou 341000, Jiangxi, Peoples R China
[5] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China
[6] Beijing Key Lab Nanomat & Nanodevices, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
MoS2; chemical vapor deposition; peel-off; interface engineering; field effect transistors; LAYER MOS2; SINGLE-LAYER; GRAPHENE; GROWTH;
D O I
10.1021/acsami.6b04896
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The performance of two-dimensional (2D) MoS2 devices depends largely on the quality of the MoS2 itself. Existing fabrication process for 2D MoS2 relies on lithography and etching. However, it is extremely difficult to achieve clean patterns without any contaminations or passivations. Here we report a peel-off pattering of MoS2 films on substrates based on a proper interface engineering. The peel -off process utilizes the strong adhesion between gold and MoS2 and removes the MoS2 film contact with gold directly, leading to clean MoS2 pattern generation without residuals. Significantly improved electrical performances including high mobility similar to 17.1 +/- 8.3 cm(2)/(V s) and on/off ratio similar to 5.6 3.6 x 10(6) were achieved. Such clean fabrication technique paves a way to high quality MoS2 devices for various electrical and optical applications.
引用
收藏
页码:16546 / 16550
页数:5
相关论文
共 50 条
  • [1] Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions
    Zhang, Han
    Ye, Meng
    Wang, Yangyang
    Quhe, Ruge
    Pan, Yuanyuan
    Guo, Ying
    Song, Zhigang
    Yang, Jinbo
    Guo, Wanlin
    Lu, Jing
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (24) : 16367 - 16376
  • [2] 2D or not 2D? The impact of nanoscale roughness and substrate interactions on the tribological properties of graphene and MoS2
    Elinski, Meagan B.
    Liu, Zhuotong
    Spear, Jessica C.
    Batteas, James D.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (10)
  • [3] Covalent Patterning of 2D MoS2
    Chen, Xin
    Kohring, Malte
    Assebban, M'hamed
    Tywoniuk, Bartlomiej
    Bartlam, Cian
    Moses Badlyan, Narine
    Maultzsch, Janina
    Duesberg, Georg S.
    Weber, Heiko B.
    Knirsch, Kathrin C.
    Hirsch, Andreas
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (52) : 13117 - 13122
  • [4] Suspended MoS2 Photodetector Using Patterned Sapphire Substrate
    Liu, Xinke
    Hu, Shengqun
    Luo, Jiangliu
    Li, Xiaohua
    Wu, Jing
    Chi, Dongzhi
    Ang, Kah-Wee
    Yu, Wenjie
    Cai, Yongqing
    [J]. SMALL, 2021, 17 (43)
  • [5] Uniaxial and biaxial strain engineering in 2D MoS2 with lithographically patterned thin film stressors
    Azizimanesh, Ahmad
    Pena, Tara
    Sewaket, Arfan
    Hou, Wenhui
    Wu, Stephen M.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (21)
  • [6] Is MoS2 a robust material for 2D electronics?
    Lorenz, Tommy
    Ghorbani-Asl, Mahdi
    Joswig, Jan-Ole
    Heine, Thomas
    Seifert, Gotthard
    [J]. NANOTECHNOLOGY, 2014, 25 (44)
  • [7] 2D MoS2 Nanostructures for Biomedical Applications
    Liu, Teng
    Liu, Zhuang
    [J]. ADVANCED HEALTHCARE MATERIALS, 2018, 7 (08)
  • [8] 2D Layered Semiconductors beyond MoS2
    Chang, Wen-Hao
    [J]. 2019 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATION (VLSI-TSA), 2019,
  • [9] 2D MATERIALS Peeling off magnetic layers
    Stoddart, Alison
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (10): : 357 - 357
  • [10] Understanding Substrate Effects on 2D MoS2 Growth: A Kinetic Monte Carlo Approach
    Aldana, Samuel
    Wang, Lulin
    Spiridon, Ion Alin
    Zhang, Hongzhou
    [J]. ADVANCED MATERIALS INTERFACES, 2024,