Hamiltonization and Integrability of the Chaplygin Sphere in Rn

被引:25
|
作者
Jovanovic, Bozidar [1 ]
机构
[1] Math Inst SANU, Belgrade 11000, Serbia
关键词
Chaplying reducing multiplier; Nonholonomic reduction; Rolling sphere; Liouville integrability; NONHOLONOMIC SYSTEMS; SYMMETRY; FLOWS;
D O I
10.1007/s00332-010-9067-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a natural n-dimensional generalization of the classical nonholonomic Chaplygin sphere problem. We prove that for a specific choice of the inertia operator, the restriction of the generalized problem onto a zero value of the SO(n-1)-momentum mapping becomes an integrable Hamiltonian system after an appropriate time reparametrization.
引用
收藏
页码:569 / 593
页数:25
相关论文
共 50 条
  • [11] On the Chaplygin Sphere in a Magnetic Field
    Alexey V. Borisov
    Andrey V. Tsiganov
    Regular and Chaotic Dynamics, 2019, 24 : 739 - 754
  • [12] On the Chaplygin Sphere in a Magnetic Field
    Borisov, Alexey V.
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2019, 24 (06): : 739 - 754
  • [13] ON GENERALIZED NONHOLONOMIC CHAPLYGIN SPHERE PROBLEM
    Tsiganov, A. V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (06)
  • [14] Dynamics of the Chaplygin sphere with additional constraint
    Mikishanina, Evgeniya A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [15] A Discretization of the Nonholonomic Chaplygin Sphere Problem
    Fedorov, Yuri N.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [16] Complete integrability of vector fields in RN
    Llibre, Jaume
    Ramirez, Rafael
    Ramirez, Valentin
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 168
  • [17] Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top
    Shen, Jinglai
    Schneider, David A.
    Bloch, Anthony M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (09) : 905 - 945
  • [18] On the Chaplygin system on the sphere with velocity dependent potential
    Tsiganov, A. V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 : 94 - 99
  • [19] ACCESSIBILITY OF SPHERE PACKINGS IN RN
    BLIND, G
    BLIND, R
    ARCHIV DER MATHEMATIK, 1978, 30 (04) : 438 - 439
  • [20] Motion on the sphere: Integrability and families of orbits
    Voyatzi, D
    Ichtiaroglou, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 93 (1-4): : 331 - 342