Global well-posedness and asymptotic behavior for the 2D Boussinesq system with variable viscosity

被引:0
|
作者
Yu, Yanghai [1 ]
Zhou, Mulan [1 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Anhui, Peoples R China
关键词
Boussinesq system; Global well-posedness; Asymptotic behavior; Weak dissipation; NAVIER-STOKES EQUATIONS; REGULARITY;
D O I
10.1016/j.jmaa.2019.123668
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the global existence and uniqueness of strong solutions to 2D Boussinesq system with variable kinematic viscosity depending on the temperature. Comparing with the previous results given by Abidi and Zhang [4] who considered the critical case alpha = 1, we weaken the dissipation effect in the temperature equation to the supercritical case alpha is an element of (0, 1). Furthermore, we obtain the algebraic decay estimate for parallel to u parallel to(L2). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Guo, Zhengguang
    Zhang, Zunzun
    Skalak, Zdenek
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (04)
  • [32] On the well-posedness of the inviscid 2D Boussinesq equation
    Hasan Inci
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [33] GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ EQUATIONS WITH A VELOCITY DAMPING TERM
    Wan, Renhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2709 - 2730
  • [34] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Xing Su
    Gangwei Wang
    Yue Wang
    Advances in Difference Equations, 2019
  • [35] Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation
    Yang, Wanrong
    Jiu, Quansen
    Wu, Eahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 4188 - 4213
  • [36] Global well-posedness of a model on 2D Boussinesq-Benard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [37] Global well-posedness of a model on 2D Boussinesq–Bénard equations
    Li, Chaoying
    Xu, Xiaojing
    Ye, Zhuan
    Zeitschrift fur Angewandte Mathematik und Physik, 2021, 72 (01):
  • [38] Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation
    Ye, Zhuan
    Xu, Xiaojing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6716 - 6744
  • [39] Oscillatory integral estimates and global well-posedness for the 2D Boussinesq equation
    Farah, Luiz Gustavo
    Rousset, Frederic
    Tzvetkov, Nikolay
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (04): : 655 - 679
  • [40] GLOBAL WELL-POSEDNESS FOR THE 2D FRACTIONAL BOUSSINESQ EQUATIONS IN THE SUBCRITICAL CASE
    Zhou, Daoguo
    Li, Zilai
    Shang, Haifeng
    Wu, Jiahong
    Yuan, Baoquan
    Zhao, Jiefeng
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) : 233 - 255