Optimization of the Electrode Properties for High-Performance Ni-Rich Li-Ion Batteries

被引:15
|
作者
Sarawutanukul, Sangchai [1 ]
Tomon, Chanikarn [1 ]
Phattharasupakun, Nutthaphon [1 ]
Duangdangchote, Salatan [1 ]
Duriyasart, Farkfun [1 ]
Chiochan, Poramane [1 ]
Sawangphruk, Montree [1 ]
机构
[1] Vidyasirimedhi Inst Sci & Technol, Ctr Excellence Energy Storage Technol CEST, Dept Chem & Biomol Engn, Sch Energy Sci & Engn, Rayong 21210, Thailand
关键词
Ni-rich Li-ion batteries; electrode porosity; electrode kinetics; mass transport; calendering effect; 18650 cylindrical cells; LINI0.8CO0.15AL0.05O2 CATHODE MATERIALS; LITHIUM-SULFUR BATTERIES; ELECTROCHEMICAL PERFORMANCE; CAPACITY; MECHANISM; FADE;
D O I
10.1021/acsami.1c07019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The microstructure of the electrodes in lithium-ion batteries (LIBs) strongly affects their gravimetric and volumetric energy and power as well as their cycle life. Especially, the effect of the microstructure in the case of next-generation Ni-rich cathode materials has not yet been investigated. A comprehensive understanding of the calendering process is therefore necessary to find an optimal level of the electrode microstructure that can enhance lithium-ion transportation, minimize plastic deformation, and improve conductivity. This work therefore aims to investigate the effect of microstructure and wettability on the electrode kinetics of next-generation Ni-rich LiNi0.88Co0.09Al0.03O2-based 18650 cylindrical cells, which were produced at the semiautomation scale of the pilot plant. Thus, all materials, electrodes, and the battery production are in quality control as the same level of commercial LIBs. With the optimized microstructure and other properties including a finely tuned compaction degree of 17.54%, a thickness of 188 mu m, a sheet resistivity of 36.47 m Omega cm(-2), a crystallite size of 88.85 nm, a porosity of 26.03%, an electrode Brunauer-Emmett-Teller (BET) surface area of 1.090 m(2) g(-1), an electrode density of 2.529 g cm(-3), and an electrolyte uptake capability of 47.8%, the optimized LiNi0.88Co0.09Al0.03O2 18650 cylindrical cells exhibit excellent high-rate capacity retention, fast Li-ion diffusion, and low internal resistance. The optimized electrode microstructure of next-generation Ni-rich cathode materials could be an effective strategy toward the real application of next-generation Ni-rich LIBs.
引用
收藏
页码:30643 / 30652
页数:10
相关论文
共 50 条
  • [21] Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries
    He-Kang Zhu
    Zi-Jia Yin
    Yu Tang
    Yang Ren
    He Zhu
    Dong Luo
    Si Lan
    Li-Gao Yang
    Qi Liu
    Rare Metals, 2022, 41 : 2552 - 2559
  • [22] Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries
    Dose, Wesley M.
    Temprano, Israel
    Allen, Jennifer P.
    Bjorklund, Erik
    O'Keefe, Christopher A.
    Li, Weiqun
    Mehdi, B. Layla
    Weatherup, Robert S.
    De Volder, Michael F. L.
    Grey, Clare P.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (11) : 13206 - 13222
  • [23] Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries
    He-Kang Zhu
    Zi-Jia Yin
    Yu Tang
    Yang Ren
    He Zhu
    Dong Luo
    Si Lan
    Li-Gao Yang
    Qi Liu
    RareMetals, 2022, 41 (08) : 2552 - 2559
  • [24] Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries
    Zhu, He-Kang
    Yin, Zi-Jia
    Tang, Yu
    Ren, Yang
    Zhu, He
    Luo, Dong
    Lan, Si
    Yang, Li-Gao
    Liu, Qi
    RARE METALS, 2022, 41 (08) : 2552 - 2559
  • [25] Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries
    Park, Geon-Tae
    Yoon, Dae Ro
    Kim, Un-Hyuck
    Namkoong, Been
    Lee, Junghwa
    Wang, Melody M.
    Lee, Andrew C.
    Gu, X. Wendy
    Chueh, William C.
    Yoon, Chong S.
    Sun, Yang-Kook
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (12) : 6616 - 6626
  • [26] Architecting "Li-rich Ni-rich" core-shell layered cathodes for high-energy Li-ion batteries
    Jing, Zhiwei
    Wang, Suning
    Fu, Qiang
    Baran, Volodymyr
    Tayal, Akhil
    Casati, Nicola P. M.
    Missyul, Alexander
    Simonelli, Laura
    Knapp, Michael
    Li, Fujun
    Ehrenberg, Helmut
    Indris, Sylvio
    Shan, Chongxin
    Hua, Weibo
    ENERGY STORAGE MATERIALS, 2023, 59
  • [27] Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries
    Jung, Roland
    Morasch, Robert
    Karayaylali, Pinar
    Phillips, Katherine
    Maglia, Filippo
    Stinner, Christoph
    Shao-Horn, Yang
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) : A132 - A141
  • [28] Revisiting the Effect of Natural and Artificial Graphite on the Performance of Ni-rich Li-ion Batteries at Coin and Cylindrical Cells
    Songthan, Ronnachai
    Sangsanit, Thitiphum
    Santiyuk, Kanruthai
    Homlamai, Kan
    Tejangkura, Worapol
    Sawangphruk, Montree
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (05)
  • [29] Synthesis of Ni-Rich Layered-Oxide Nanomaterials with Enhanced Li-Ion Diffusion Pathways as High-Rate Cathodes for Li-Ion Batteries
    Jiang, Ming
    Zhang, Qian
    Wu, Xiaochao
    Chen, Zhiqiang
    Danilov, Dmitri L.
    Eichel, Ruediger-A
    Notten, Peter H. L.
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (07): : 6583 - 6590
  • [30] A first-principle study on the properties of Zr-doped Ni-rich cathode for Li-ion batteries
    Qinghua Zhou
    Huaxin Zhang
    Zhiping Liu
    Liying Zeng
    Mi Sun
    Wei Hu
    Huili Li
    Ionics, 2023, 29 : 3537 - 3542