Van der Waals heterostructures of P, BSe, and SiC monolayers

被引:59
|
作者
Idrees, M. [1 ]
Din, H. U. [1 ]
Khan, S. A. [1 ]
Ahmad, Iftikhar [2 ]
Gan, Li-Yong [3 ]
Nguyen, Chuong V. [4 ]
Amin, B. [1 ]
机构
[1] Hazara Univ, Dept Phys, Mansehra 21300, Pakistan
[2] Abbottabad Univ Sci & Technol, Abbottabad 22010, Pakistan
[3] South China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Guangdong, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; CHARGE-TRANSFER; HIGH-STABILITY; BAND-GAP; MOS2; SEMICONDUCTOR;
D O I
10.1063/1.5082884
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electronic structure, optical, and photocatalytic properties of P, BSe, and SiC monolayers and their van der Waals heterostructures are investigated by (hybrid) first-principle calculations. The stability of the heterostructures and their corresponding induced-strain/unstrain mono layers are confirmed by the phonon spectra calculations. Similar to the corresponding parent monolayers, P-BSe (BSe-SiC) heterostructures are indirect type-II (type-I) bandgap semiconductors. A tensile strain of 10% (2%) transforms P-BSe (BSe-SiC) to type-I (type-II) direct bandgap nature. Interestingly, irrespective of the corresponding monolayers, the P-SiC heterostructure is a direct bandgap (type-II) semiconductor. The calculated electron and hole carrier mobilities of these heterostructures are in the range of 1.2 x 10(4) cm(2)/Vs to 68.56 x 10(4) cm(2)/Vs. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions are dominated by excitons. The valence and conduction band edges straddle the standard redox potentials in P-BSe, BSe-SiC, and P-SiC (strained) heterostructures, making them promising candidates for water splitting in the acidic solution. An induced compressive strain of 3.5% makes P suitable for water splitting at pH = 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (03) : 106 - 111
  • [42] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [43] Picosecond photoresponse in van der Waals heterostructures
    Massicotte M.
    Schmidt P.
    Vialla F.
    Schädler K.G.
    Reserbat-Plantey A.
    Watanabe K.
    Taniguchi T.
    Tielrooij K.J.
    Koppens F.H.L.
    Nature Nanotechnology, 2016, 11 (1) : 42 - 46
  • [44] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    Nature Nanotechnology, 2018, 13 : 994 - 1003
  • [45] Exciton-exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures
    Erkensten, Daniel
    Brem, Samuel
    Malic, Ermin
    PHYSICAL REVIEW B, 2021, 103 (04)
  • [46] Electric field tunable electronic properties of P-ZnO and SiC-ZnO van der Waals heterostructures
    Din, H. U.
    Idrees, M.
    Alrebdi, Tahani A.
    Nguyen, Chuong, V
    Amin, B.
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 164 : 166 - 170
  • [47] Tuning the electronic properties of van der Waals heterostructures composed of black phosphorus and graphitic SiC
    Tang, Kewei
    Qi, Weihong
    Li, Yejun
    Wang, Tianran
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (46) : 29333 - 29340
  • [48] Electronic properties of two-dimensional G/GaN(SiC) van der Waals heterostructures
    Zheng, Jiangshan
    Li, Enling
    Cui, Zhen
    Ma, Deming
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 124
  • [49] Theoretical studies of SiC van der Waals heterostructures as anodes of Li-ion batteries
    He, Xiaojie
    Tang, Anwen
    Li, Yi
    Zhang, Yongfan
    Chen, Wenkai
    Huang, Shuping
    APPLIED SURFACE SCIENCE, 2021, 563
  • [50] Tunable interlayer excitons in two-dimensional SiC/MoSSe van der Waals heterostructures
    Hou, X. R.
    Wang, S. D.
    APPLIED SURFACE SCIENCE, 2021, 546