Van der Waals heterostructures of P, BSe, and SiC monolayers

被引:59
|
作者
Idrees, M. [1 ]
Din, H. U. [1 ]
Khan, S. A. [1 ]
Ahmad, Iftikhar [2 ]
Gan, Li-Yong [3 ]
Nguyen, Chuong V. [4 ]
Amin, B. [1 ]
机构
[1] Hazara Univ, Dept Phys, Mansehra 21300, Pakistan
[2] Abbottabad Univ Sci & Technol, Abbottabad 22010, Pakistan
[3] South China Univ Technol, Sch Mat Sci & Engn, Key Lab Adv Energy Storage Mat Guangdong Prov, Guangzhou 510641, Guangdong, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
ELECTRONIC-STRUCTURES; OPTICAL-PROPERTIES; CHARGE-TRANSFER; HIGH-STABILITY; BAND-GAP; MOS2; SEMICONDUCTOR;
D O I
10.1063/1.5082884
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electronic structure, optical, and photocatalytic properties of P, BSe, and SiC monolayers and their van der Waals heterostructures are investigated by (hybrid) first-principle calculations. The stability of the heterostructures and their corresponding induced-strain/unstrain mono layers are confirmed by the phonon spectra calculations. Similar to the corresponding parent monolayers, P-BSe (BSe-SiC) heterostructures are indirect type-II (type-I) bandgap semiconductors. A tensile strain of 10% (2%) transforms P-BSe (BSe-SiC) to type-I (type-II) direct bandgap nature. Interestingly, irrespective of the corresponding monolayers, the P-SiC heterostructure is a direct bandgap (type-II) semiconductor. The calculated electron and hole carrier mobilities of these heterostructures are in the range of 1.2 x 10(4) cm(2)/Vs to 68.56 x 10(4) cm(2)/Vs. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions are dominated by excitons. The valence and conduction band edges straddle the standard redox potentials in P-BSe, BSe-SiC, and P-SiC (strained) heterostructures, making them promising candidates for water splitting in the acidic solution. An induced compressive strain of 3.5% makes P suitable for water splitting at pH = 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Magnetoexcitons in phosphorene monolayers, bilayers, and van der Waals heterostructures
    Kezerashvili, Roman Ya
    Spiridonova, Anastasia
    Dublin, Andrew
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [2] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [3] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [4] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [5] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [6] First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers
    Alam, Qaisar
    Muhammad, S.
    Idrees, M.
    Hieu, Nguyen, V
    Binh, Nguyen T. T.
    Nguyen, C.
    Amin, Bin
    RSC ADVANCES, 2021, 11 (24) : 14263 - 14268
  • [7] Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study
    Idrees, M.
    Fawad, M.
    Bilal, M.
    Saeed, Y.
    Nguyen, C.
    Amin, Bin
    RSC ADVANCES, 2020, 10 (43) : 25801 - 25807
  • [8] Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures
    Idrees, M.
    Din, H. U.
    Ali, R.
    Rehman, G.
    Hussain, T.
    Nguyen, C. V.
    Ahmad, Iftikhar
    Amin, B.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (34) : 18612 - 18621
  • [9] Magnetoexcitons in transition metal dichalcogenides monolayers, bilayers, and van der Waals heterostructures
    Kezerashvili, Roman Ya
    Spiridonova, Anastasia
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [10] Van der Waals heterostructures and devices
    Yuan Liu
    Nathan O. Weiss
    Xidong Duan
    Hung-Chieh Cheng
    Yu Huang
    Xiangfeng Duan
    Nature Reviews Materials, 1