Plant Metabolites as SARS-CoV-2 Inhibitors Candidates: In Silico and In Vitro Studies

被引:14
|
作者
Oliveira Lopes, Alberto Jorge [1 ]
Calado, Gustavo Pereira [2 ]
Froes, Yuri Nascimento [3 ]
de Araujo, Sandra Alves [4 ]
Franca, Lucas Martins [5 ]
de Andrade Paes, Antonio Marcus [5 ]
de Morais, Sebastiao Vieira [5 ]
da Rocha, Claudia Quintino [6 ]
Vasconcelos, Cleydlenne Costa [6 ]
机构
[1] Fed Inst Sci Educ & Technol Maranhao, Campus Santa Ines,Castelo Branco S-N, BR-65300000 Santa Ines, Brazil
[2] Univ Brasilia UnB Brasilia DF, Dept Farm, Programa Posgrad Ciencias Farmaceut PPGCF, BR-70910900 Brasilia, DF, Brazil
[3] CEUMA Univ, Lab Microbial Pathogenic, BR-65075120 Sao Luis, Maranhao, Brazil
[4] Univ Fed Maranhao, Programa Posgrad Biotecnol RENORBIO, BR-65080805 Sao Luis, Maranhao, Brazil
[5] Univ Fed Maranhao, Physiol Sci Dept, BR-65080805 Sao Luis, Maranhao, Brazil
[6] Univ Fed Maranhao, Chem Dept, BR-65080805 Sao Luis, Maranhao, Brazil
关键词
new drugs agents; medicinal chemistry; in silico protocols; natural products; ORALLY BIOAVAILABLE INHIBITOR; CORONAVIRUS DISEASE 2019; AIDED DRUG DESIGN; CHINESE MEDICINE; AMENTOFLAVONE; KAEMPFERITRIN; FLAVONOIDS; DISCOVERY; COVID-19; DOCKING;
D O I
10.3390/ph15091045
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Since it acquired pandemic status, SARS-CoV-2 has been causing all kinds of damage all over the world. More than 6.3 million people have died, and many cases of sequelae are in survivors. Currently, the only products available to most of the world's population to fight the pandemic are vaccines, which still need improvement since the number of new cases, admissions into intensive care units, and deaths are again reaching worrying rates, which makes it essential to compounds that can be used during infection, reducing the impacts of the disease. Plant metabolites are recognized sources of diverse biological activities and are the safest way to research anti-SARS-CoV-2 compounds. The present study computationally evaluated 55 plant compounds in five SARS-CoV-2 targets such Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA polymerase (RdRp), Papain-Like Protease (PLpro), NSP15 Endoribonuclease, Spike Protein (Protein S or Spro) and human Angiotensin-converting enzyme 2 (ACE-2) followed by in vitro evaluation of their potential for the inhibition of the interaction of the SARS-CoV-2 Spro with human ACE-2. The in silico results indicated that, in general, amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic acid were the compounds with the strongest electronic interaction parameters with the selected targets. Through the data obtained, we can demonstrate that although the indication of individual interaction of plant metabolites with both Spro and ACE-2, the metabolites evaluated were not able to inhibit the interaction between these two structures in the in vitro test. Despite this, these molecules still must be considered in the research of therapeutic agents for treatment of patients affected by COVID-19 since the activity on other targets and influence on the dynamics of viral infection during the interaction Spro x ACE-2 should be investigated.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors
    Mahmoud A. A. Ibrahim
    Alaa H. M. Abdelrahman
    Khaled S. Allemailem
    Ahmad Almatroudi
    Mahmoud F. Moustafa
    Mohamed-Elamir F. Hegazy
    The Protein Journal, 2021, 40 : 296 - 309
  • [42] An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview
    Susankar Kushari
    Iswar Hazarika
    Damiki Laloo
    Suman Kumar
    Jun Moni Kalita
    Himangshu Sarma
    Structural Chemistry, 2023, 34 : 1073 - 1104
  • [43] An integrated computational approach towards the screening of active plant metabolites as potential inhibitors of SARS-CoV-2: an overview
    Kushari, Susankar
    Hazarika, Iswar
    Laloo, Damiki
    Kumar, Suman
    Kalita, Jun Moni
    Sarma, Himangshu
    STRUCTURAL CHEMISTRY, 2023, 34 (03) : 1073 - 1104
  • [44] In Silico Study of Phenolic Compounds from Honey as Mpro SARS-CoV-2 Inhibitor Candidates
    Ferdian, Pamungkas Rizki
    Elfirta, Rizki Rabeca
    Ikhwani, Azra Zahrah Nadhirah
    Kasirah
    Haerul
    Sutardi, Dodi
    Ruhiat, Gunawan
    MEDIA PENELITIAN DAN PENGEMBANGAN KESEHATAN, 2021, 31 (03): : 213 - 232
  • [45] Traditional herbal compounds as candidates to inhibit the SARS-CoV-2 main protease: an in silico study
    de Oliveira, Osmair Vital
    Andreazza Costa, Maria Cristina
    da Costa, Ricardo Marques
    Viegas, Rafael Giordano
    Paluch, Andrew S.
    Castro Ferreira, Marcia Miguel
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (05): : 1603 - 1616
  • [46] Inhibitors of SARS-CoV-2 PLpro
    Calleja, Dale J.
    Lessene, Guillaume
    Komander, David
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [47] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Aniruddhya Mukherjee
    Khushhali Menaria Pandey
    Krishna Kumar Ojha
    Sumanta Kumar Sahu
    Beni-Suef University Journal of Basic and Applied Sciences, 12
  • [48] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Mukherjee, Aniruddhya
    Pandey, Khushhali Menaria
    Ojha, Krishna Kumar
    Sahu, Sumanta Kumar
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2023, 12 (01)
  • [49] In silico-based studies on phytochemicals from native Indian plants as potential inhibitors of SARS-CoV-2
    Sharma, Apoorva
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2022, 59 (06): : 653 - 666
  • [50] Indian red rice phenolic metabolites as potential natural inhibitors of SARS-CoV-2 main protease: A metabolomic and in silico study
    Rasaily, Shrijana
    Haldipur, Ashrita C.
    Srividya, N.
    ANNALS OF PHYTOMEDICINE-AN INTERNATIONAL JOURNAL, 2021, 10 (01): : S40 - S50