USING ARTIFICIAL INTELLIGENCE AND MACHINE-LEARNING ALGORITHMS WITH GENE EXPRESSION PROFILING TO PREDICT SUPERFICIAL BLADDER CANCER RECURRENCE AT INITIAL PRESENTATION

被引:0
|
作者
Mitra, Anirban P.
Bartsch, Georg, Jr.
Mitra, Sheetal A.
Almal, Arpit A.
Steven, Kenneth E.
Fry, David W.
Lenehan, Peter F.
Cote, Richard J.
Worzel, William P.
机构
来源
JOURNAL OF UROLOGY | 2012年 / 187卷 / 04期
关键词
D O I
10.1016/j.juro.2012.02.982
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
887
引用
收藏
页码:E361 / E361
页数:1
相关论文
共 50 条
  • [21] Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms
    Zenghua Ren
    Yudan Hu
    Ling Xu
    Respiratory Research, 20
  • [22] Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms
    Ren, Zenghua
    Hu, Yudan
    Xu, Ling
    RESPIRATORY RESEARCH, 2019, 20 (01)
  • [23] Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression
    Ramirez-Mena, Alberto
    Andres-Leon, Eduardo
    Alvarez-Cubero, Maria Jesus
    Anguita-Ruiz, Augusto
    Martinez-Gonzalez, Luis Javier
    Alcala-Fdez, Jesus
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240
  • [24] The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer
    Zeng, Lixuan
    Liu, Lei
    Chen, Dongxin
    Lu, Henghui
    Xue, Yang
    Bi, Hongjie
    Yang, Weiwei
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [25] Gene expression profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis
    C. A. Drukker
    S. G. Elias
    M. V. Nijenhuis
    J. Wesseling
    H. Bartelink
    P. Elkhuizen
    B. Fowble
    P. W. Whitworth
    R. R. Patel
    F. A. de Snoo
    L. J. van ’t Veer
    P. D. Beitsch
    E. J. Th. Rutgers
    Breast Cancer Research and Treatment, 2014, 148 : 599 - 613
  • [26] Gene expression profiling to predict the risk of locoregional recurrence in breast cancer: a pooled analysis
    Drukker, C. A.
    Elias, S. G.
    Nijenhuis, M. V.
    Wesseling, J.
    Bartelink, H.
    Elkhuizen, P.
    Fowble, B.
    Whitworth, P. W.
    Patel, R. R.
    de Snoo, F. A.
    van 't Veer, L. J.
    Beitsch, P. D.
    Rutgers, E. J. Th.
    BREAST CANCER RESEARCH AND TREATMENT, 2014, 148 (03) : 599 - 613
  • [27] Harnessing machine learning to predict colorectal cancer metastasis: A promising artificial intelligence frontier
    Awais, Abdul Raffay
    Manzoor, Ibrahim
    Pakistan, Mustafa Mansoor
    EJSO, 2024, 50 (11):
  • [28] Profiling intratumoral heterogeneity of bladder cancer subtypes at the single-cell level using machine-learning assisted histopathology.
    van Rhijn, Bas
    Mertens, Laura
    Mayr, Roman
    Bostrom, Peter
    Marques, Mirari
    van Leenders, Geert
    Gotz, Stefanie
    van der Heijden, Michiel
    Jewett, Michael
    Real, Francisco
    Stohr, Robert
    Zlotta, Alexandre
    Eckstein, Markus
    Soorojebally, Yanish
    Burger, Max
    Otto, Wolfgang
    Radvanyi, Francois
    Pouessel, Damien
    van der Kwast, Theo
    Malats, Nuria
    Hartmann, Arndt
    Allory, Yves
    van der Schoot, Deric
    Zwarthoff, Ellen
    Zuiverloon, Tahlita
    CLINICAL CANCER RESEARCH, 2020, 26 (15) : 58 - 59
  • [29] Can nomograms using urinary NMP22 predict recurrence and progression of superficial bladder cancer?
    Mellon, JK
    NATURE CLINICAL PRACTICE UROLOGY, 2005, 2 (08): : 370 - 371
  • [30] Can nomograms using urinary NMP22 predict recurrence and progression of superficial bladder cancer?
    J Kilian Mellon
    Nature Clinical Practice Urology, 2005, 2 : 370 - 371