Partial duality in SU(N) Yang-Mills theory

被引:122
|
作者
Faddeev, L
Niemi, AJ
机构
[1] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[2] Mittag Leffler Inst, S-18262 Djursholm, Sweden
[3] Russian Acad Sci, Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, Russia
关键词
D O I
10.1016/S0370-2693(99)00100-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently we have proposed a set of variables for describing the infrared limit of four dimensional SU(2) Yang-Mills theory. Here we extend these variables to the general case of four dimensional SU(N) Yang-Mills theory. We find that the SU(N) connection A mu decomposes according to irreducible representations of SO(N - 1), and the curvature two form F-mu v is related to the symplectic Kirillov two forms that characterize irreducible representations of SU(N). We propose a general class of nonlinear chiral models that may describe stable, soliton-like configurations with nontrivial topological numbers. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:214 / 218
页数:5
相关论文
共 50 条
  • [21] Savvidy vacuum in SU(2) Yang-Mills theory
    Kay, D
    Kumar, A
    Parthasarathy, R
    [J]. MODERN PHYSICS LETTERS A, 2005, 20 (22) : 1655 - 1662
  • [22] COMPACTIFICATION OF SPACETIME IN SU(INFINITY) YANG-MILLS THEORY
    SHIRAISHI, K
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (12) : 2029 - 2034
  • [23] Divergencies in noncommutative SU(2) Yang-Mills theory
    Radovanovic, V
    Buric, M
    [J]. PARTICLE PHYSICS AND THE UNIVERSE, 2005, 98 : 303 - 306
  • [24] SU(2) YANG-MILLS THEORY IN 2 DIMENSIONS
    SARKAR, S
    [J]. PHYSICAL REVIEW D, 1977, 16 (08) : 2540 - 2544
  • [25] The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory
    Ce, Marco
    Vera, Miguel Garcia
    Giustie, Leonardo
    Schaefer, Stefan
    [J]. PHYSICS LETTERS B, 2016, 762 : 232 - 236
  • [26] Duality symmetry of N=4 Yang-Mills theory on T-3
    Hacquebord, F
    Verlinde, H
    [J]. NUCLEAR PHYSICS B, 1997, 508 (03) : 609 - 622
  • [27] EMBEDDING YANG-MILLS THEORY INTO UNIVERSAL YANG-MILLS THEORY
    RAJEEV, SG
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1836 - 1841
  • [28] SU(N) quantum Yang-Mills theory in two dimensions: A complete solution
    Ashtekar, A
    Lewandowski, J
    Marolf, D
    Mourao, J
    Thiemann, T
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (11) : 5453 - 5482
  • [29] Double-winding Wilson loops in the SU(N) Yang-Mills theory
    Matsudo, Ryutaro
    Kondo, Kei-Ichi
    [J]. PHYSICAL REVIEW D, 2017, 96 (10)
  • [30] Peculiarities of decomposition of the SU(N) Yang-Mills field
    Bolokhov T.A.
    [J]. Journal of Mathematical Sciences, 2005, 125 (2) : 118 - 122