Chromatin modifications are integral elements of chromosome structure and its function and the vasculature depends on tissue-specific genome regulation for its development. A general concept for the deregulation of chromatin modifications in cardiac and vascular disease is also emerging. The recognition that metabolic memory contributes to disease persistence highlights the benefit of early and aggressive treatment. As for the importance of memory, we do know that good metabolic control delays the onset of long-term diabetic complications. There are striking parallels between the timing of disease and the development of complications. Landmark multicenter clinical trials on diabetes patients have popularized the concept that glucose is also a demonstrable determinant for the development of complications, indicating the prolonged benefit of intensive treatment and the lasting damage of conventional therapy. Each cell type experiences thousands of modifications to the epigenome in response to environmental changes it is exposed to. Therefore, history is neither lost nor forgotten and previous experiences and exposure may form future memories. There is now a strong resurgence in research trying to understand gene-environment interactions and to determine what commits vascular cell types to specific memories. Recent insights show that cardiac gene expression is distinguished by specific chromatin remodeling events and histone modifications that are associated with heart disease.