Numerical simulation of three-dimensional viscoelastic flow using the open boundary condition method in coextrusion process

被引:31
|
作者
Sunwoo, KB
Park, SJ
Lee, SJ [1 ]
Ahn, KH
Lee, SJ [1 ]
机构
[1] Seoul Natl Univ, Sch Chem Engn, Seoul 151744, South Korea
[2] Univ Suwon, Dept Polymer Engn, Suwon 445743, South Korea
关键词
coextrusion process; three-dimensional numerical simulation; finite element method; viscoelastic fluid; open boundary condition method; viscosity ratio; second normal stress difference;
D O I
10.1016/S0377-0257(01)00115-X
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Three-dimensional numerical simulation of coextrusion process of two immiscible polymers through a rectangular channel has been performed using the finite element method. The upper convected Maxwell (UCM) model and the Phan-Thien and Tanner (PTT) model were considered as viscoelastic constitutive equations. The elastic viscous stress splitting (EVSS) method was adopted to treat the viscoelastic stresses, and the streamline upwinding (SU) method was applied to avoid the failure of convergence at high elasticity. The problem arising from the ambiguous outlet boundary condition that has previously been used in the three-dimensional simulation of a viscoelastic coextrusion process could be avoided by introducing the open boundary condition (OBC) method. The abrupt change or deviation of contact line position near the outlet that was observed when the fully developed outlet boundary condition was applied could be clearly removed by using the OBC method. The effects of viscoelastic properties, such as the shear viscosity ratio, the elasticity, the second normal stress difference, and the extensional viscosity on the interface distortion, the interface curvature, and the degree of encapsulation along the downstream direction have been investigated. The shear viscosity ratio between the polymer melts was the controlling factor of the interface position and the encapsulation phenomena. The interface distortion seems to increase as the elasticity ratio increases under constant shear viscosity, even though it is not so large. The degree of encapsulation seems to increase with increasing the ratio of the second normal stress differences. The extensional viscosity had minor effect on the encapsulation phenomena. The second normal stress difference was found to have a great influence on the increasing of the degree of encapsulation along the downstream direction as compared to the effect of the first normal stress difference.. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 50 条
  • [31] Three-Dimensional Numerical Simulation of Controlled-Source Electromagnetic Method Based on Third-Type Boundary Condition
    Guo, Hongyu
    Li, Yong
    Gong, Shengping
    Lin, Lujun
    Duan, Zhuang
    Jia, Shihao
    SYMMETRY-BASEL, 2025, 17 (01):
  • [32] Three-dimensional simulation of planar contraction viscoelastic flow by penalty finite element method
    Mu, Yue
    Zhao, Guoqun
    Zhang, Chengrui
    Chen, Anbiao
    Li, Huiping
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 63 (07) : 811 - 827
  • [33] Numerical Simulation Method for Three-Dimensional Flow Field of Multistage Axial Flow Compressor
    Wang, Yu
    Liu, Yixiang
    Wen, Junyi
    Zhang, Xinbo
    2017 SECOND INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE), 2017, : 220 - 224
  • [34] Simulation of three-dimensional bubbles using desingularized boundary integral method
    Zhang, YL
    Yeo, KS
    Khoo, BC
    Chong, WK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1999, 31 (08) : 1311 - 1320
  • [35] Simulation of drop deposition process in annular mist flow using three-dimensional particle method
    Xie, H
    Koshizuka, S
    Oka, Y
    NUCLEAR ENGINEERING AND DESIGN, 2005, 235 (16) : 1687 - 1697
  • [36] Numerical simulation of three-dimensional characteristics of flow at 90 open-channel junction
    Zhang, Ting
    Xu, Wei-Lin
    Wu, Ping
    Mai, Dong-Ling
    Shuili Xuebao/Journal of Hydraulic Engineering, 2009, 40 (01): : 52 - 59
  • [37] Numerical Simulation of Three-Dimensional and Orthogonal Cutting Process
    Wei, Wang
    Qian, Zhang
    Jun, Zhan
    ACC 2009: ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2009, : 173 - 175
  • [38] Three-Dimensional Numerical Flow Simulation in a Centrifugal Pump
    Chalghoum, Issa
    Elaoud, Sami
    Akrout, Mohsen
    Taieb, Ezzeddine Hadj
    Design and Modeling of Mechanical Systems - II, 2015, : 801 - 809
  • [39] Three-dimensional numerical simulation of flow in river bends
    Xu, Dong
    Liu, Zhao-Ping
    Qian, Ai-Guo
    Bai, Yu-Chuan
    Shuili Xuebao/Journal of Hydraulic Engineering, 2010, 41 (12): : 1423 - 1431
  • [40] Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids
    Ni, Chen
    Jiang, Di
    MICROMACHINES, 2020, 11 (10)