Artificial intelligence in the detection of skin cancer

被引:22
|
作者
Beltrami, Eric J. [1 ]
Brown, Alistair C. [2 ]
Salmon, Paul J. M. [2 ]
Leffell, David J. [3 ]
Ko, Justin M. [4 ]
Grant-Kels, Jane M. [5 ,6 ]
机构
[1] Univ Connecticut, Sch Med, Farmington, CT USA
[2] SkinCentre, Dermatol Surg Unit, Wellington, New Zealand
[3] Yale Sch Med, Dept Dermatol, New Haven, CT USA
[4] Stanford Med, Dept Dermatol, Stanford, CA USA
[5] Univ Connecticut, Dept Dermatol, Sch Med, 21 South Rd, Farmington, CT 06032 USA
[6] Univ Florida, Coll Med, Gainesville, FL USA
关键词
artificial intelligence; clinical practice; diagnosis; health care dollars; machine learning; neural networks; skin cancer; technology;
D O I
10.1016/j.jaad.2022.08.028
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Recent advances in artificial intelligence (AI) in dermatology have demonstrated the potential to improve the accuracy of skin cancer detection. These capabilities may augment current diagnostic processes and improve the approach to the management of skin cancer. To explain this technology, we discuss fundamental terminology, potential benefits, and limitations of AI, and commercial applications relevant to dermatologists. A clear understanding of the technology may help to reduce physician concerns about AI and promote its use in the clinical setting. Ultimately, the development and validation of AI technologies, their approval by regulatory agencies, and widespread adoption by dermatologists and other clinicians may enhance patient care. Technology-augmented detection of skin cancer has the potential to improve quality of life, reduce health care costs by reducing unnecessary procedures, and promote greater access to high-quality skin assessment. Dermatologists play a critical role in the responsible development and deployment of AI capabilities applied to skin cancer.
引用
下载
收藏
页码:1336 / 1342
页数:7
相关论文
共 50 条
  • [21] Implementation of Artificial Intelligence Techniques for Cancer Detection
    Darshan Patel
    Yash Shah
    Nisarg Thakkar
    Kush Shah
    Manan Shah
    Augmented Human Research, 2020, 5 (1)
  • [22] Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects
    Lyakhova U.A.
    Lyakhov P.A.
    Computers in Biology and Medicine, 2024, 178
  • [23] Development of a skin tumor detection system using artificial intelligence
    Jinnai, Shunichi
    Hamamoto, Ryuji
    CANCER SCIENCE, 2022, 113 : 1440 - 1440
  • [24] Artificial Intelligence for Breast Cancer Detection on Mammography: Factors Related to Cancer Detection
    Yoen, Heera
    Jang, Myoung-jin
    Yi, Ann
    Moon, Woo Kyung
    Chang, Jung Min
    ACADEMIC RADIOLOGY, 2024, 31 (06) : 2239 - 2247
  • [25] Artificial intelligence-based classification for the diagnostics of skin cancer
    Winkler, Julia K.
    Haenssle, Holger A.
    DERMATOLOGIE, 2022, 73 (11): : 838 - 844
  • [26] Automatic Classification of Images with Skin Cancer Using Artificial Intelligence
    Gaytan Campos, Israel
    Morales Castro, Wendy
    Priego Sanchez, Belem
    Fitz Rodriguez, Efren
    Guzman Cabrera, Rafael
    COMPUTACION Y SISTEMAS, 2022, 26 (01): : 325 - 336
  • [27] Superior skin cancer classification by the combination of human and artificial intelligence
    Hekler, Achim
    Utikal, Jochen S.
    Enk, Alexander H.
    Hauschild, Axel
    Weichenthal, Michael
    Maron, Roman C.
    Berking, Carola
    Haferkamp, Sebastian
    Klode, Joachim
    Schadendorf, Dirk
    Schilling, Bastian
    Holland-Letz, Tim
    Izar, Benjamin
    von Kalle, Christof
    Froehling, Stefan
    Brinker, Titus J.
    EUROPEAN JOURNAL OF CANCER, 2019, 120 : 114 - 121
  • [28] Explainable artificial intelligence in skin cancer recognition: A systematic review
    Hauser, Katja
    Kurz, Alexander
    Haggenmueller, Sarah
    Maron, Roman C.
    von Kalle, Christof
    Utikal, Jochen S.
    Meier, Friedegund
    Hobelsberger, Sarah
    Gellrich, Frank F.
    Sergon, Mildred
    Hauschild, Axel
    French, Lars E.
    Heinzerling, Lucie
    Schlager, Justin G.
    Ghoreschi, Kamran
    Schlaak, Max
    Hilke, Franz J.
    Poch, Gabriela
    Kutzner, Heinz
    Berking, Carola
    Heppt, Markus, V
    Erdmann, Michael
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Sondermann, Wiebke
    Goebeler, Matthias
    Schilling, Bastian
    Kather, Jakob N.
    Froehling, Stefan
    Lipka, Daniel B.
    Hekler, Achim
    Krieghoff-Henning, Eva
    Brinker, Titus J.
    EUROPEAN JOURNAL OF CANCER, 2022, 167 : 54 - 69
  • [29] Legal and ethical considerations of artificial intelligence in skin cancer diagnosis
    Jobson, Dale
    Mar, Victoria
    Freckelton, Ian
    AUSTRALASIAN JOURNAL OF DERMATOLOGY, 2022, 63 (01) : E1 - E5
  • [30] Skin cancer diagnosed using artificial intelligence on clinical images
    van der Waal, I.
    ORAL DISEASES, 2018, 24 (06) : 873 - 874