p-adic Dynamics of Hecke Operators on Modular Curves

被引:0
|
作者
Goren, Eyal Z. [1 ]
Kassaei, Payman L. [2 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke St W, Montreal, PQ H3A 0B9, Canada
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
基金
加拿大自然科学与工程研究理事会;
关键词
p-adic Dynamics; Hecke operators; Modular curves; Serre-Tate coordinates; Gross-Hopkins period map; RANDOM-WALKS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the p-adic dynamics of prime-to-p Hecke operators on the set of points of modular curves in both cases of good ordinary and supersingular reduction. We pay special attention to the dynamics on the set of CM points. In the case of ordinary reduction we employ the Serre-Tate coordinates, while in the case of supersingular reduction we use a parameter on the deformation space of the unique formal group of height 2 over (F) over bar (p), and take advantage of the Gross-Hopkins period map.
引用
收藏
页码:387 / 431
页数:46
相关论文
共 50 条