Tunable charge-transport polarity in thienothiophene-bisoxoindolinylidene-benzodifurandione copolymers for high-performance field-effect transistors

被引:6
|
作者
Chen, Zhihui [1 ,2 ]
Huang, Jianyao [1 ]
Zhang, Weifeng [1 ]
Zhou, Yankai [1 ,2 ]
Wei, Xuyang [1 ,2 ]
Wei, Jinbei [1 ]
Zheng, Yuanhui [1 ]
Wang, Liping [3 ]
Yu, Gui [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, CAS Res Educ Ctr Excellence Mol Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
CONJUGATED POLYMERS; BACKBONE FLUORINATION; SEMICONDUCTORS; MOBILITY;
D O I
10.1039/d1tc02833b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
N-Type semiconducting polymers are important materials for modern electronics but limited in variety and performance. To design a new n-type polymer semiconductor requires a judicious trade-off between structural parameters involving both backbone and side-chain modifications. The appeal of backbone modification emerges from the tunable electronic structures and conformational control. To control these effects typically needs installation of substituents such as halogens. In a polymer system with high molecular complexity, a few common substituents such as methyl and methoxy groups are an underdeveloped area of chemical space. In this work, we study the substituent effects in methyl- and methoxy-substituted thienothiophene-bis(oxoindolinylidene)benzodifurandione copolymers on field-effect performances. The two substituents affect the conformations of the backbone and increase the frontier orbital energy levels of the polymers. Using such electronic effects, we are able to tune the charge transport behaviors from n-channel to ambipolar. This strategy allows further substitution patterns for backbone modification in other polymer semiconductors.
引用
收藏
页码:2671 / 2680
页数:10
相关论文
共 50 条
  • [41] Electric Field Confinement Effect on Charge Transport in Organic Field-Effect Transistors
    Li, Xiaoran
    Kadashchuk, Andrey
    Fishchuk, Ivan I.
    Smaal, Wiljan T. T.
    Gelinck, Gerwin
    Broer, Dirk J.
    Genoe, Jan
    Heremans, Paul
    Baessler, Heinz
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (06)
  • [42] Charge Transport Physics of Conjugated Polymer Field-Effect Transistors
    Sirringhaus, Henning
    Bird, Matt
    Richards, Tim
    Zhao, Ni
    [J]. ADVANCED MATERIALS, 2010, 22 (34) : 3893 - 3898
  • [43] High-performance carbon nanotube field-effect transistor with tunable Polarities
    Lin, YM
    Appenzeller, J
    Knoch, J
    Avouris, P
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (05) : 481 - 489
  • [44] Tuning the Charge-Transport Property of Pyromellitic Diimide-Based Conjugated Polymers towards Efficient Field-Effect Transistors
    Zhou, Xu
    Cao, Yue
    Wang, Xiao-Ye
    Guo, Zi-Hao
    Wang, Jie-Yu
    Pei, Jian
    [J]. ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2014, 3 (02) : 209 - 215
  • [45] High performance organic field-effect transistors
    Chou, Wei-Yang
    Mai, Yu-Shen
    Kuo, Chia-Wei
    Cheng, Horng-Long
    Chen, Yi-Ren
    Lin, Shih-Ting
    Yang, Feng-Yu
    Shu, Dun-Yin
    Liao, Chi-Chang
    [J]. ORGANIC FIELD-EFFECT TRANSISTORS V, 2006, 6336
  • [46] Graphene field-effect transistors with tunable sensitivity for high performance Hg (II) sensing
    Li, Peng
    Liu, Baijun
    Zhang, Dongzhi
    Sun, Yan'e
    Liu, Jingjing
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (15)
  • [47] One-pot synthesized ABA tri-block copolymers for high-performance organic field-effect transistors
    Ge, Feng
    Liu, Zhen
    Tian, Fengshou
    Du, Yuchang
    Liu, Lingyun
    Wang, Xiaohong
    Lu, Hongbo
    Wu, Zongquan
    Zhang, Guobing
    Qiu, Longzhen
    [J]. POLYMER CHEMISTRY, 2018, 9 (36) : 4517 - 4522
  • [48] High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers
    Yui, Xiang
    Xiao, Kai
    Chen, Jihua
    Lavrik, Nickolay V.
    Hong, Kunlun
    Sumpter, Bobby G.
    Geohegan, David B.
    [J]. ACS NANO, 2011, 5 (05) : 3559 - 3567
  • [49] Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors
    Park, WI
    Kim, JS
    Yi, GC
    Bae, MH
    Lee, HJ
    [J]. APPLIED PHYSICS LETTERS, 2004, 85 (21) : 5052 - 5054
  • [50] Combustion synthesis of electrospun LaIno nanofiber for high-performance field-effect transistors
    Chen, Qi
    Li, Jun
    Yang, Yaohua
    Zhu, Wenqing
    Zhang, Jianhua
    [J]. NANOTECHNOLOGY, 2019, 30 (42)