Solar-driven enhanced chemical adsorption and interfacial evaporation using porous graphene-based spherical composites

被引:9
|
作者
Kim, Ye Eun [1 ]
Lim, Junwan [1 ]
Lee, Hyunjung [2 ]
Lee, Eunyoung [1 ]
Kim, Dong Yeong [1 ]
Jun, Young-Si [1 ]
Han, Jong Hun [1 ]
Lee, Sang Hyun [1 ]
机构
[1] Chonnam Natl Univ, Sch Chem Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 335 Gwahangno, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Porous; Graphene-based spherical composites; Interfacial evaporation; Chemical adsorption; Solar; AQUEOUS-SOLUTION; WATER; HEAT; DEGRADATION; TEMPERATURE; TECHNOLOGY; NANOSHEETS; ENERGY;
D O I
10.1016/j.chemosphere.2021.133013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar-energy-driven water purification is a promising technology for obtaining clean water during the current global climate crisis. Solar absorbers with high light absorption capacity and efficient energy conversion are critical components of solar-driven water evaporation and purification systems. Herein, we demonstrate that porous reduced graphene oxide (rGO)-based composite spheres facilitate efficient water evaporation and effective organic pollutant adsorption from water. Most solar light (>99% for 1 mm thick composites) is absorbed by the porous rGO-based composite spheres floating on water and is subsequently converted into heat, which is efficiently transferred to water at the air-water interface. Evaporation efficiency via energy conversion by the floating sphere composites reaches similar to 74%. The increase in surface temperature of water also contributes to improving the adsorption capacity of the rGO-based composite spheres for organic pollutants. Furthermore, the composites can effectively block ultraviolet radiation, preventing the chemical reaction of water pollutants into harmful components.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Metal-organic framework-based materials for solar-driven interfacial evaporation
    Zeng, Sen
    Si, Junhui
    Cui, Zhixiang
    Yuan, Zhanhui
    Chemical Engineering Journal, 2024, 502
  • [22] Recent Progress on the Solar-Driven Interfacial Evaporation Based on Natural Products and Synthetic Polymers
    Wang, Fei
    Li, Jiyan
    Bai, Wei
    Wang, Chengjun
    Li, An
    SOLAR RRL, 2021, 5 (12)
  • [23] Nanofibrous hydrogel-reduced graphene oxide membranes for effective solar-driven interfacial evaporation and desalination
    Zang, Linlin
    Sun, Liguo
    Zhang, Shaochun
    Finnerty, Casey
    Kim, Albert
    Ma, Jun
    Mi, Baoxia
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [24] Porous carbon@carbon sponge for enhanced solar-driven seawater evaporation and wastewater remediation
    Ma, Xuke
    Wang, Longqian
    Li, Shuangqing
    Zhao, Yafei
    Shang, Huishan
    Jia, Chaoyang
    Wang, Shisheng
    Zhao, Yifei
    Zhang, Bing
    DESALINATION, 2024, 582
  • [25] Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
    Wang, S.
    Niu, Y.
    Mu, W.
    Zhu, Z.
    Sun, H.
    Li, J.
    Liang, W.
    Li, A.
    Materials Today Chemistry, 2022, 26
  • [26] Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
    Wang, S.
    Niu, Y.
    Mu, W.
    Zhu, Z.
    Sun, H.
    Li, J.
    Liang, W.
    Li, A.
    MATERIALS TODAY CHEMISTRY, 2022, 26
  • [27] Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
    Wang, S.
    Niu, Y.
    Mu, W.
    Zhu, Z.
    Sun, H.
    Li, J.
    Liang, W.
    Li, A.
    MATERIALS TODAY CHEMISTRY, 2022, 26
  • [28] Enhanced waste water purification performance of solar-driven interfacial water evaporation through the integration of electrocatalysis
    Xue, Chaorui
    Zhang, Chi
    Zhang, Yu
    Liu, Lei
    Zheng, Wenjing
    Li, Ying
    Zhang, Huinian
    Jia, Suping
    Li, Ning
    Chang, Qing
    Hu, Shengliang
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 66
  • [29] Bacterial cellulose-based film with self-floating hierarchical porous structure for efficient solar-driven interfacial evaporation
    Jin, Mengtian
    Qu, Xiangyang
    Li, Jing
    Deng, Lili
    Han, Zhiliang
    Chen, Shiyan
    Wang, Huaping
    CARBOHYDRATE POLYMERS, 2023, 321
  • [30] Research progress in carbon-based photothermal materials based on solar-driven interfacial evaporation design
    Xu, Bing
    Zhou, Jing
    Liu, Jia
    Zhang, Xu
    Yang, Xiaotong
    Yao, Xingjie
    Guo, Peixun
    Ma, Liang
    Zhang, Xinyu
    Cailiao Gongcheng/Journal of Materials Engineering, 2024, 52 (10): : 44 - 56